Complexity in Hamiltonian-driven dissipative chaotic dynamical systems

被引:12
|
作者
Lai, YC
Grebogi, C
机构
[1] UNIV KANSAS,DEPT PHYS & ASTRON,LAWRENCE,KS 66045
[2] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
[3] UNIV MARYLAND,INST PHYS SCI & TECHNOL,DEPT MATH,COLLEGE PK,MD 20742
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevE.54.4667
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The existence of symmetry in chaotic dynamical systems often leads to one or several low-dimensional invariant subspaces in the phase space. We demonstrate that complex behaviors can arise when the dynamics in the invariant subspace is Hamiltonian but the full system is dissipative. In particular, an infinite number of distinct attractors can coexist. These attractors can be quasiperiodic, strange nonchaotic, and chaotic with different positive Lyapunov exponents. Finite perturbations in initial conditions or parameters can lead to a change from nonchaotic attractors to chaotic attractors. However, arbitrarily small perturbations can lead to dynamically distinct chaotic attractors. This work demonstrates that the interplay between conservative and dissipative dynamics can give rise to rich complexity even in physical systems with a few degrees of freedom.
引用
收藏
页码:4667 / 4675
页数:9
相关论文
共 50 条
  • [2] Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems
    Yang, Yongliang
    Wunsch, Donald
    Yin, Yixin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (08) : 1929 - 1940
  • [3] Hamiltonian structure for dispersive and dissipative dynamical systems
    Figotin, Alexander
    Schenker, Jeffrey H.
    JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (04) : 969 - 1056
  • [4] Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems
    Alexander Figotin
    Jeffrey H. Schenker
    Journal of Statistical Physics, 2007, 128 : 969 - 1056
  • [5] Hamiltonian-driven shadow tomography of quantum states
    Hu, Hong-Ye
    You, Yi-Zhuang
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [6] Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach
    A. K. Abramyan
    S. A. Vakulenko
    Theoretical and Mathematical Physics, 2002, 130 : 245 - 255
  • [7] Dissipative and Hamiltonian systems with chaotic behavior: An analytic approach
    Abramyan, AK
    Vakulenko, SA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 130 (02) : 245 - 255
  • [8] Hamiltonian-Driven Hybrid Adaptive Dynamic Programming
    Yang, Yongliang
    Vamvoudakis, Kyriakos G.
    Modares, Hamidreza
    Yin, Yixin
    Wunsch, Donald C.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (10): : 6423 - 6434
  • [9] Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems
    V. V. Trofimov
    M. V. Shamolin
    Journal of Mathematical Sciences, 2012, 180 (4) : 365 - 530
  • [10] Hamiltonian-Driven Adaptive Dynamic Programming With Approximation Errors
    Yang, Yongliang
    Modares, Hamidreza
    Vamvoudakis, Kyriakos G.
    He, Wei
    Xu, Cheng-Zhong
    Wunsch, Donald C.
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13762 - 13773