Exploitation of Time Series Sentinel-2 Data and Different Machine Learning Algorithms for Detailed Tree Species Classification

被引:44
|
作者
Xi, Yanbiao [1 ]
Ren, Chunying [2 ]
Tian, Qingjiu [1 ]
Ren, Yongxing [3 ]
Dong, Xinyu [1 ]
Zhang, Zhichao [1 ]
机构
[1] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Peoples R China
[2] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Wetland Ecol & Environm, Changchun 130102, Peoples R China
[3] Jilin Univ, Coll Earth Sci, Changchun 130100, Peoples R China
基金
中国国家自然科学基金;
关键词
Vegetation; Forestry; Support vector machines; Machine learning algorithms; Time series analysis; Remote sensing; Feature extraction; Deep learning; sentinel-2; image; sequential pattern; tree species classification; HYPERSPECTRAL IMAGES; LIDAR; LANDSAT; SENSITIVITY; NDVI;
D O I
10.1109/JSTARS.2021.3098817
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The classification of tree species through remote sensing data is of great significance to monitoring forest disturbances, biodiversity assessment, and carbon estimation. The dense time series and a wide swath of Sentinel-2 data provided the opportunity to map tree species accurately and in a timely manner over a large area. Many current studies have applied machine learning (ML) algorithms combined with Sentinel-2 images to classify tree species, but it is still unclear, which algorithm is more effective in the automotive extraction of tree species. In this study, five ML algorithms were compared to identify the composition of tree species with multitemporal Sentinel-2 images in the JianShe forest farm, Northeast China. Three major types of deep neural networks [Conv1D, AlexNet, and long short-term memory (LSTM)] were tested to classify Sentinel-2 time series, which represent three disparate but effective strategies to apply sequential data. The other two models are support vector machine (SVM) and random forest (RF), which are renowned for extensive adoption and high performance for various remote sensing applications. The results show that the overall accuracy of neural network models is better than that of SVM and RF. The Conv1D model had the highest classification accuracy (84.19%), followed by the LSTM model (81.52%), and the AlexNet model (76.02%). For non-neural network models, RF's classification accuracy (79.04%) is higher than that of SVM (72.79%), but lower than that of Conv1D and LSTM. Therefore, the deep neural networks combined with multitemporal Sentinel-2 images can efficiently improve the accuracy of tree species classification.
引用
收藏
页码:7589 / 7603
页数:15
相关论文
共 50 条
  • [1] Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data
    Wessel, Mathias
    Brandmeier, Melanie
    Tiede, Dirk
    REMOTE SENSING, 2018, 10 (09)
  • [2] Evaluating the Potential of Sentinel-2 Time Series Imagery and Machine Learning for Tree Species Classification in a Mountainous Forest
    Liu, Pan
    Ren, Chunying
    Wang, Zongming
    Jia, Mingming
    Yu, Wensen
    Ren, Huixin
    Xia, Chenzhen
    REMOTE SENSING, 2024, 16 (02)
  • [3] A Sentinel-2 machine learning dataset for tree species classification in Germany
    Freudenberg, Maximilian
    Schnell, Sebastian
    Magdon, Paul
    EARTH SYSTEM SCIENCE DATA, 2025, 17 (02) : 351 - 367
  • [4] Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine Learning in South Korea and China
    Lim, Joongbin
    Kim, Kyoung-Min
    Jin, Ri
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (03)
  • [5] Crop Type Identification and Mapping Using Machine Learning Algorithms and Sentinel-2 Time Series Data
    Feng, Siwen
    Zhao, Jianjun
    Liu, Tingting
    Zhang, Hongyan
    Zhang, Zhengxiang
    Guo, Xiaoyi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (09) : 3295 - 3306
  • [6] Temporal Transferability of Tree Species Classification in Temperate Forests with Sentinel-2 Time Series
    Verhulst, Margot
    Heremans, Stien
    Blaschko, Matthew B.
    Somers, Ben
    REMOTE SENSING, 2024, 16 (14)
  • [7] DEEP LEARNING FOR THE CLASSIFICATION OF SENTINEL-2 IMAGE TIME SERIES
    Pelletier, Charlotte
    Webb, Geoffrey I.
    Petitjean, Francois
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 461 - 464
  • [8] Efficient Argan Tree Deforestation Detection Using Sentinel-2 Time Series and Machine Learning
    Karmoude, Younes
    Idbraim, Soufiane
    Saidi, Souad
    Masse, Antoine
    Arbelo, Manuel
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [9] Tree Species Classification with Multi-Temporal Sentinel-2 Data
    Persson, Magnus
    Lindberg, Eva
    Reese, Heather
    REMOTE SENSING, 2018, 10 (11)
  • [10] Vegetation classification in a subtropical region with Sentinel-2 time series data and deep learning
    Zhang, Ming
    Li, Dengqiu
    Li, Guiying
    Lu, Dengsheng
    GEO-SPATIAL INFORMATION SCIENCE, 2025, 28 (01) : 145 - 163