High-power sodium titanate anodes; a comparison of lithium vs sodium-ion batteries

被引:29
|
作者
Xu, Yijie [1 ,2 ]
Bauer, Dustin [1 ]
Lubke, Mechthild [1 ]
Ashton, Thomas E. [1 ]
Zong, Yun [2 ]
Darr, Jawwad A. [1 ]
机构
[1] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[2] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way, Singapore 138634, Singapore
基金
英国工程与自然科学研究理事会;
关键词
Continuous hydrothermal flow synthesis; Sodium titanate; Na2Ti3O7; Na-ion battery; Li-ion battery; High power; CONTINUOUS HYDROTHERMAL SYNTHESIS; NANOCRYSTALLINE ANATASE TIO2; ELECTRODE MATERIALS; NEGATIVE ELECTRODE; ENERGY-STORAGE; INTERCALATION; NA2TI3O7; NANOWIRES; INSERTION; TEMPERATURE;
D O I
10.1016/j.jpowsour.2018.10.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium titanate nanopowder (nominal formula Na1.5H0.5Ti3O7) was directly synthesized using a continuous hydrothermal flow synthesis process using a relatively low base concentration (4 M NaOH) in process. The as made titanate nanomaterials were characterised using powder X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller analysis and transmission electron microscopy, and evaluated as potential electrode materials for Li-ion and Na-ion batteries. Cyclic voltammetry studies on half-cells revealed that the sodium titanate nanomaterial stored charge primarily through a combination of pseudocapacitive and diffusion-limited processes in both systems. Electrochemical cycling tests at a high specific current of 1000 mA g(-1), revealed that the Li-ion and Na-ion cells retained relatively high specific capacities after 400 cycles of 131 and 87 mAh g(-1), respectively. This study demonstrates the potential of CHFS-made sodium titanate nanopower as an anode material for both Li- and Na-ion cell chemistries.
引用
收藏
页码:28 / 37
页数:10
相关论文
共 50 条
  • [1] Sodium Titanate for Sodium-Ion Batteries
    Libich, Jiri
    Maca, Josef
    Chekannikov, Andrey
    Vondrak, Jiri
    Cudek, Pavel
    Fibek, Michal
    Artner, Werner
    Fafilek, Guenter
    Sedlarikova, Marie
    SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY, 2019, 55 (01) : 109 - 113
  • [2] Sodium Titanate for Sodium-Ion Batteries
    Jiří Libich
    Josef Máca
    Andrey Chekannikov
    Jiří Vondrák
    Pavel Čudek
    Michal Fíbek
    Werner Artner
    Guenter Fafilek
    Marie Sedlaříková
    Surface Engineering and Applied Electrochemistry, 2019, 55 : 109 - 113
  • [3] Titanate Anodes for Sodium Ion Batteries
    Marca M. Doeff
    Jordi Cabana
    Mona Shirpour
    Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24 : 5 - 14
  • [4] Titanate Anodes for Sodium Ion Batteries
    Doeff, Marca M.
    Cabana, Jordi
    Shirpour, Mona
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2014, 24 (01) : 5 - 14
  • [5] Alloy anodes for sodium-ion batteries
    Shu-Min Zheng
    Yan-Ru Tian
    Ya-Xia Liu
    Shuang Wang
    Chao-Quan Hu
    Bao Wang
    Kai-Ming Wang
    Rare Metals, 2021, 40 : 272 - 289
  • [6] Alloy anodes for sodium-ion batteries
    Shu-Min Zheng
    Yan-Ru Tian
    Ya-Xia Liu
    Shuang Wang
    Chao-Quan Hu
    Bao Wang
    Kai-Ming Wang
    RareMetals, 2021, 40 (02) : 272 - 289
  • [7] Developing anodes for sodium-ion batteries
    Scott, Alex
    CHEMICAL & ENGINEERING NEWS, 2021, 99 (08) : 12 - 12
  • [8] Alloy anodes for sodium-ion batteries
    Zheng, Shu-Min
    Tian, Yan-Ru
    Liu, Ya-Xia
    Wang, Shuang
    Hu, Chao-Quan
    Wang, Bao
    Wang, Kai-Ming
    RARE METALS, 2021, 40 (02) : 272 - 289
  • [9] Organic molecular design for high-power density sodium-ion batteries
    Qi, Ying
    Zhao, Huaping
    Lei, Yong
    CHEMICAL COMMUNICATIONS, 2025, 61 (12) : 2375 - 2386
  • [10] Advancements in Graphite Anodes for Lithium-Ion and Sodium-Ion Batteries: A Review
    Xiong, Kai
    Qi, Tianshuang
    Zhang, Xiong
    ELECTROANALYSIS, 2025, 37 (01)