On the Choice of the Event Trigger in Event-based Estimation

被引:0
|
作者
Trimpe, Sebastian [1 ]
Campi, Marco C. [2 ]
机构
[1] Max Planck Inst Intelligent Syst, Autonomous Mot Dept, Tubingen, Germany
[2] Univ Brescia, Dept Informat Engn, Brescia, Italy
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In event-based state estimation, the event trigger decides whether or not a measurement is used for updating the state estimate. In a remote estimation scenario, this allows for trading off estimation performance for communication, and thus saving resources. In this paper, popular event triggers for estimation, such as send-on-delta (SoD), measurement-based triggering (MBT), variance-based triggering (VBT), and relevant sampling (RS), are compared for the scenario of a scalar linear process with Gaussian noise. First, the analysis of the information pattern underlying the triggering decision reveals a fundamental advantage of triggers employing the real-time measurement in their decision (such as MBT, RS) over those that do not (VBT). Second, numerical simulation studies support this finding and, moreover, provide a quantitative evaluation of the triggers in terms of their average estimation versus communication performance.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Toward Event-Based State Estimation for Neuromorphic Event Cameras
    Liu, Xinhui
    Cheng, Meiqi
    Shi, Dawei
    Shi, Ling
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (07) : 4281 - 4288
  • [2] Gaussianity-Preserving Event-Based State Estimation With an FIR-Based Stochastic Trigger
    Schmitt, Eva Julia
    Noack, Benjamin
    Krippner, Wolfgang
    Hanebeck, Uwe D.
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 769 - 774
  • [3] Event-based State Estimation with Negative Information
    Sijs, Joris
    Noack, Benjamin
    Hanebeck, Uwe D.
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 2192 - 2199
  • [4] Event-based depth estimation with dense occlusion
    Zhou, Kangrui
    Lei, Taihang
    Guan, Banglei
    Yu, Qifeng
    OPTICS LETTERS, 2024, 49 (12) : 3376 - 3379
  • [5] A survey of event-based strategies on control and estimation
    Liu, Qinyuan
    Wang, Zidong
    He, Xiao
    Zhou, D. H.
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2014, 2 (01): : 90 - 97
  • [6] Event-based Continuous Optical Flow Estimation
    Fu J.-Y.
    Yu L.
    Yang W.
    Lu X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (09): : 1845 - 1856
  • [7] Event-based dataset for classification and pose estimation
    Turner, James P.
    Pedersen, Jens E.
    Conradt, Joerg
    Nowotny, Thomas
    PROCEEDINGS OF THE 2022 ANNUAL NEURO-INSPIRED COMPUTATIONAL ELEMENTS CONFERENCE (NICE 2022), 2022, : 101 - 103
  • [8] Instantaneous spectrum estimation of event-based densities
    Galleani, L
    Cohen, L
    Nelson, D
    Scargle, JD
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2002, 2002 (01) : 87 - 91
  • [9] On stochastic and deterministic event-based state estimation
    Yu, Hao
    Shang, Jun
    Chen, Tongwen
    AUTOMATICA, 2021, 123
  • [10] Event-Based Kalman Filtering Exploiting Correlated Trigger Information
    Noack, Benjamin
    Oehl, Clemens
    Hanebeck, Uwe D.
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,