Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

被引:13
|
作者
Nutku, Y [1 ]
机构
[1] Feza Gursey Inst, TR-81220 Istanbul, Turkey
来源
关键词
D O I
10.1088/0305-4470/36/27/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.
引用
收藏
页码:7559 / 7567
页数:9
相关论文
共 50 条
  • [1] On the quantization of Poisson brackets
    Donin, J
    ADVANCES IN MATHEMATICS, 1997, 127 (01) : 73 - 93
  • [2] QUANTIZATION BASED ON GENERALIZED POISSON BRACKETS
    YAN, CC
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (11): : 1239 - 1259
  • [3] ON POISSON BRACKETS OF HYDRODYNAMIC TYPE WITH A DEGENERATE METRIC
    GRINBERG, NI
    RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (04) : 231 - 232
  • [4] Quantization and Dynamisation of Trace-Poisson Brackets
    Jean Avan
    Eric Ragoucy
    Vladimir Rubtsov
    Communications in Mathematical Physics, 2016, 341 : 263 - 287
  • [5] Quantization and Dynamisation of Trace-Poisson Brackets
    Avan, Jean
    Ragoucy, Eric
    Rubtsov, Vladimir
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) : 263 - 287
  • [6] TRANSFORMATION BRACKETS FOR HARMONIC OSCILLATOR FUNCTIONS
    MOSHINSKY, M
    NUCLEAR PHYSICS, 1959, 13 (01): : 104 - 116
  • [7] CALCULATIONS OF HARMONIC-OSCILLATOR BRACKETS
    FENG, DH
    TAMURA, T
    COMPUTER PHYSICS COMMUNICATIONS, 1975, 10 (02) : 87 - 97
  • [8] IDENTITY FOR HARMONIC-OSCILLATOR BRACKETS
    RAO, KS
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1985, 24 (01) : 93 - 97
  • [9] ON THE QUANTIZATION OF DAMPED HARMONIC OSCILLATOR
    Ghosh, Subrata
    Choudhuri, Amitava
    Talukdar, B.
    ACTA PHYSICA POLONICA B, 2009, 40 (01): : 49 - 57
  • [10] Quantization of the damped harmonic oscillator
    Serhan, M.
    Abusini, M.
    Al-Jamel, Ahmed
    El-Nasser, H.
    Rabei, Eqab M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)