ALGEBRAIC CURVES WITH A LARGE NON-TAME AUTOMORPHISM GROUP FIXING NO POINT

被引:14
|
作者
Giulietti, M. [1 ]
Korchmaros, G. [2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
关键词
Algebraic curves; positive characteristic; automorphism groups; FINITE SIMPLE-GROUPS; SCHUR MULTIPLIERS; FUNCTION BODIES; FUNCTION-FIELDS; REE TYPE; P-GROUP; NUMBER;
D O I
10.1090/S0002-9947-2010-05025-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an algebraically closed field of characteristic p > 0, and let chi be a curve over K of genus g >= 2. Assume that the automorphism group Aut(chi) of chi over K fixes no point of chi. The following result is proven. If there is a point P on chi whose stabilizer in Aut(chi) contains a p-subgroup of order greater than gp/(p - 1), then chi is birationally equivalent over K to one of the irreducible plane curves (II), (III), (IV), (V) listed in the Introduction.
引用
收藏
页码:5983 / 6001
页数:19
相关论文
共 20 条