On a Minimax Control Problem for a Positional Functional under Geometric and Integral Constraints on Control Actions

被引:9
|
作者
Kornev, D. V. [1 ,2 ]
Lukoyanov, N. Yu. [1 ,2 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ul S Kovalevskoi 16, Ekaterinburg 620990, Russia
[2] Ural Fed Univ, Pr Lenina 51, Ekaterinburg 620000, Russia
基金
俄罗斯科学基金会;
关键词
minimax control; differential games; integral constraints; nonterminal payoff; DIFFERENTIAL-GAMES; PROGRAM SYNTHESIS;
D O I
10.1134/S0081543816050096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Within the game-theoretical approach, we consider a minimax feedback control problem for a linear dynamical system with a positional quality index, which is the norm of the deviation of the motion from given target points at given times. Control actions are subject to both geometric and integral constraints. A procedure for the approximate calculation of the optimal guaranteed result and for the construction of a control law that ensures the result is developed. The procedure is based on the recursive construction of upper convex hulls of auxiliary program functions. Results of numerical simulations are presented.
引用
收藏
页码:S85 / S100
页数:16
相关论文
共 50 条
  • [1] On a minimax control problem for a positional functional under geometric and integral constraints on control actions
    Kornev, D., V
    Lukoyanov, N. Yu
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (02): : 87 - 101
  • [2] On a minimax control problem for a positional functional under geometric and integral constraints on control actions
    D. V. Kornev
    N. Yu. Lukoyanov
    Proceedings of the Steklov Institute of Mathematics, 2016, 293 : 85 - 100
  • [3] On the numerical solution of a minimax control problem with a positional functional
    M. I. Gomoyunov
    D. V. Kornev
    N. Yu. Lukoyanov
    Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 77 - 95
  • [4] On the numerical solution of a minimax control problem with a positional functional
    Gomoyunov, M. I.
    Kornev, D. V.
    Lukoyanov, N. Yu.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 291 : S77 - S95
  • [5] On the Stability of a Procedure for Solving a Minimax Control Problem for a Positional Functional
    Gomoyunov, M. I.
    Lukoyanov, N. Yu.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 : S54 - S69
  • [6] On the stability of a procedure for solving a minimax control problem for a positional functional
    Gomoyunov, M. I.
    Lukoyanov, N. Yu.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (01): : 68 - 82
  • [7] On the stability of a procedure for solving a minimax control problem for a positional functional
    M. I. Gomoyunov
    N. Yu. Lukoyanov
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 54 - 69
  • [8] Minimax optimal control problem with state constraints
    Karamzin, Dmitry
    de Oliveira, Valeriano
    Pereira, Fernando
    Silva, Geraldo
    EUROPEAN JOURNAL OF CONTROL, 2016, 32 : 24 - 31
  • [9] CONTROL IN MIXED STRATEGIES ON THE MINIMAX OF AN INTEGRAL FUNCTIONAL
    KRASOVSKII, AN
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1992, 56 (02): : 167 - 175
  • [10] FORECASTING ALGORITHM FOR THE PROBLEM OF CONTROL UNDER, FUNCTIONAL CONSTRAINTS
    AKIMOV, AN
    BUKOV, VN
    MISHCHENKO, AA
    AUTOMATION AND REMOTE CONTROL, 1993, 54 (03) : 398 - 404