Conformally Flat Almost Kenmotsu 3-Manifolds

被引:13
|
作者
Wang, Yaning [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Almost Kenmotsu 3-manifold; conformally flat; harmonic Reeb vector field; MANIFOLDS; SYMMETRY;
D O I
10.1007/s00009-017-0984-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by virtue of a system of partial differential equations, we give a necessary and sufficient condition for an almost Kenmotsu 3-manifold to be conformally flat. As an application, we obtain that an almost Kenmotsu 3-H-manifold with scalar curvature invariant along the Reeb vector field is conformally flat if and only if it is locally isometric to either the hyperbolic space H-3(-1) or the Riemannian product H-2(-4) x R. Some concrete examples verifying main results are presented.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Conformally Flat Almost Kenmotsu 3-Manifolds
    Yaning Wang
    [J]. Mediterranean Journal of Mathematics, 2017, 14
  • [2] On Almost Kenmotsu 3-Manifolds Which Are Conformally Flat
    Lee, Ji-Eun
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [3] CONFORMALLY FLAT ALMOST COSYMPLECTIC 3-MANIFOLDS
    Wang, Wenjie
    [J]. QUAESTIONES MATHEMATICAE, 2024, 47 (10) : 2095 - 2108
  • [4] CONFORMALLY FLAT NORMAL ALMOST CONTACT 3-MANIFOLDS
    Cho, Jong Taek
    [J]. HONAM MATHEMATICAL JOURNAL, 2016, 38 (01): : 59 - 69
  • [5] ON THE η-PARALLELISM IN ALMOST KENMOTSU 3-MANIFOLDS
    Inoguchi, Jun-Ichi
    Lee, Ji-Eun
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (06) : 1303 - 1336
  • [6] Conformally flat CR-integrable almost Kenmotsu manifolds
    Wang, Yaning
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (04): : 375 - 387
  • [7] Ricci solitons on almost Kenmotsu 3-manifolds
    Wang, Yaning
    [J]. OPEN MATHEMATICS, 2017, 15 : 1236 - 1243
  • [8] HOMOGENEITY AND SYMMETRY ON ALMOST KENMOTSU 3-MANIFOLDS
    Wang, Yaning
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 917 - 934
  • [9] *-Ricci tensor on almost Kenmotsu 3-manifolds
    Dey, Dibakar
    Majhi, Pradip
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (13)
  • [10] Ricci Recurrent Almost Kenmotsu 3-Manifolds
    Venkatesha, V.
    Kumara, H. Aruna
    Naik, Devaraja Mallesha
    [J]. FILOMAT, 2021, 35 (07) : 2293 - 2301