Alternative Splicing of G9a Regulates Neuronal Differentiation

被引:52
|
作者
Fiszbein, Ana [1 ,2 ]
Giono, Luciana E. [1 ,2 ]
Quaglino, Ana [1 ,2 ]
Berardino, Bruno G. [3 ]
Sigaut, Lorena [4 ,5 ]
von Bilderling, Catalina [4 ,5 ]
Schor, Ignacio E. [1 ,2 ,9 ]
Enrique Steinberg, Juliana H. [6 ]
Rossi, Mario [6 ]
Pietrasanta, Lia I. [4 ,5 ,7 ]
Caramelo, Julio J. [3 ,8 ]
Srebrow, Anabella [1 ,2 ]
Kornblihtt, Alberto R. [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fisiol Biol Mol & Celular, Ciudad Univ Pabellon 2,C1428EHA, Buenos Aires, DF, Argentina
[2] Inst Fisiol Biol Mol & Neurociencias IFIBYNE CONI, Ciudad Univ Pabellon 2,C1428EHA, Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Biol, Ciudad Univ Pabellon 2,C1428EHA, Buenos Aires, DF, Argentina
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Ciudad Univ Pabellon 1,C1428EHA, RA-1428 Buenos Aires, DF, Argentina
[5] IFIBA CONICET, Ciudad Univ Pabellon 1,C1428EHA, Buenos Aires, DF, Argentina
[6] Max Planck Gesell, Partner Inst, Inst Invest Biomed Buenos Aires, C1425FQD, Buenos Aires, DF, Argentina
[7] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Ctr Microscopias Avanzadas, Cuidad Univ,C1428EHA, Buenos Aires, DF, Argentina
[8] Fdn Inst Leloir, C1405BWE, Buenos Aires, DF, Argentina
[9] European Mol Biol Lab, Genome Biol Unit, D-69117 Heidelberg, Germany
来源
CELL REPORTS | 2016年 / 14卷 / 12期
关键词
HISTONE METHYLATION; DNA METHYLATION; CHROMATIN; GENE; TRANSCRIPTION; INHIBITION; GLP; METHYLTRANSFERASES; ESTABLISHMENT; RECOGNITION;
D O I
10.1016/j.celrep.2016.02.063
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.
引用
下载
收藏
页码:2797 / 2808
页数:12
相关论文
共 50 条
  • [1] Methyltransferase G9A regulates T cell differentiation during murine intestinal inflammation
    Antignano, Frann
    Burrows, Kyle
    Hughes, Michael R.
    Han, Jonathan M.
    Kron, Ken J.
    Penrod, Nadia M.
    Oudhoff, Menno J.
    Wang, Steven Kai Hao
    Min, Paul H.
    Gold, Matthew J.
    Chenery, Alistair L.
    Braam, Mitchell J. S.
    Fung, Thomas C.
    Rossi, Fabio M. V.
    McNagny, Kelly M.
    Arrowsmith, Cheryl H.
    Lupien, Mathieu
    Levings, Megan K.
    Zaph, Colby
    JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (05): : 1945 - 1955
  • [2] Alternative mRNA splicing regulates epidermal differentiation
    Takashima, S.
    Sun, W.
    Otten, A.
    Cai, P.
    Bui, J.
    Mai, M.
    Amarbayar, O.
    Cheng, B.
    Tong, E.
    Li, Z.
    Qu, K.
    Sun, B.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2023, 143 (05) : S139 - S139
  • [3] G9a influences neuronal subtype specification in striatum
    Maze, Ian
    Chaudhury, Dipesh
    Dietz, David M.
    Von Schimmelmann, Melanie
    Kennedy, Pamela J.
    Lobo, Mary Kay
    Sillivan, Stephanie E.
    Miller, Michael L.
    Bagot, Rosemary C.
    Sun, HaoSheng
    Turecki, Gustavo
    Neve, Rachael L.
    Hurd, Yasmin L.
    Shen, Li
    Han, Ming-Hu
    Schaefer, Anne
    Nestler, Eric J.
    NATURE NEUROSCIENCE, 2014, 17 (04) : 533 - U81
  • [4] Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation
    Ling, Belinda Mei Tze
    Bharathy, Narendra
    Chung, Teng-Kai
    Kok, Wai Kay
    Li, Side
    Tan, Yong Hua
    Rao, Vinay Kumar
    Gopinadhan, Suma
    Sartorelli, Vittorio
    Walsh, Martin J.
    Taneja, Reshma
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (03) : 841 - 846
  • [5] Alternative RNA Splicing Associated With Mammalian Neuronal Differentiation
    Liu, Jiancheng
    Geng, Anqi
    Wu, Xiwei
    Lin, Ren-Jang
    Lu, Qiang
    CEREBRAL CORTEX, 2018, 28 (08) : 2810 - 2816
  • [6] Alternative Role of HuD Splicing Variants in Neuronal Differentiation
    Hayashi, Satoru
    Yano, Masato
    Igarashi, Mana
    Okano, Hirotaka James
    Okano, Hideyuki
    JOURNAL OF NEUROSCIENCE RESEARCH, 2015, 93 (03) : 399 - 409
  • [7] Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing
    Furlanis, Elisabetta
    Scheiffele, Peter
    ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 34, 2018, 34 : 451 - 469
  • [8] Alternative Splicing of Neuroligin Regulates the Rate of Presynaptic Differentiation
    Lee, Hanson
    Dean, Camin
    Isacoff, Ehud
    JOURNAL OF NEUROSCIENCE, 2010, 30 (34): : 11435 - 11446
  • [9] Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions
    Mauger, Oriane
    Klinck, Roscoe
    Chabot, Benoit
    Muchardt, Christian
    Allemand, Eric
    Batsche, Eric
    NUCLEIC ACIDS RESEARCH, 2015, 43 (03) : 1869 - 1882
  • [10] The methyltransferase G9a regulates HoxA9-dependent transcription in AML
    Lehnertz, Bernhard
    Pabst, Caroline
    Su, Le
    Miller, Michelle
    Liu, Feng
    Yi, Lin
    Zhang, Regan
    Krosl, Jana
    Yung, Eric
    Kirschner, Jeanette
    Rosten, Patty
    Underhill, T. Michael
    Jin, Jian
    Hebert, Josee
    Sauvageau, Guy
    Humphries, R. Keith
    Rossi, Fabio M.
    GENES & DEVELOPMENT, 2014, 28 (04) : 317 - 327