EM-LAST: Effective Multidimensional Latent Space Transport for an Unpaired Image-to-Image Translation With an Energy-Based Model

被引:1
|
作者
Han, Giwoong [1 ]
Min, Jinhong [1 ]
Han, Sung Won [1 ]
机构
[1] Korea Univ, Sch Ind & Management Engn, Seoul 02841, South Korea
关键词
Task analysis; Aerospace electronics; Visualization; Licenses; Generative adversarial networks; Deep learning; Decoding; Energy-based model; image-to-image translation; Langevin dynamics; multidimensional latent space; vector-quantized variational autoencoder;
D O I
10.1109/ACCESS.2022.3189352
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For an unpaired image-to-image translation to work effectively, the latent space of each image domain must be well-designed. The codes of each style must be translated toward the target while preserving the parts corresponding to the source content. In general, most Variational Autoencoder (VAE)-based models use a one-dimensional latent space. However, to apply high dimensional methodologies such as vector quantization, controlling a multidimensional latent space is necessary. In this study, among the VAE-based models that use relatively complex multidimensional latent spaces, we apply an Energy-Based Model and Vector-Quantized VAE v2, with the latter as the main model. We show that among the latent spaces that represent each image domain, the importance of each feature at the top and bottom latent spaces must be interpreted differently for appropriate translation. Therefore, we argue that simply understanding the features of latent space composition well can show effective image translation results. We also present various analyses and visual outcomes of multidimensional latent space transport.
引用
收藏
页码:72839 / 72849
页数:11
相关论文
共 40 条
  • [1] Unpaired Image-to-Image Translation via Latent Energy Transport
    Zhao, Yang
    Chen, Changyou
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16413 - 16422
  • [2] Homomorphic Latent Space Interpolation for Unpaired Image-To-Image Translation
    Chen, Ying-Cong
    Xu, Xiaogang
    Tian, Zhuotao
    Jia, Jiaya
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2403 - 2411
  • [3] Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation
    Lin, Jianxin
    Chen, Zhibo
    Xia, Yingce
    Liu, Sen
    Qin, Tao
    Luo, Jiebo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (04) : 1254 - 1266
  • [4] Latent-SDE: guiding stochastic differential equations in latent space for unpaired image-to-image translation
    Zhang, Xianjie
    Li, Min
    He, Yujie
    Gou, Yao
    Zhang, Yusen
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 7765 - 7775
  • [5] Towards Fine-Grained Control over Latent Space for Unpaired Image-to-Image Translation
    Luo, Lei
    Hsu, William
    Wang, Shangxian
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 408 - 420
  • [6] UNPAIRED IMAGE-TO-IMAGE TRANSLATION FROM SHARED DEEP SPACE
    Wu, Xuehui
    Shao, Jie
    Gao, Lianli
    Shen, Heng Tao
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2127 - 2131
  • [7] IMAGE DATA AUGMENTATION WITH UNPAIRED IMAGE-TO-IMAGE CAMERA MODEL TRANSLATION
    Foo, Chi Fa
    Winkler, Stefan
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3246 - 3250
  • [8] Cycle consistent twin energy-based models for image-to-image translation
    Tiwary, Piyush
    Bhattacharyya, Kinjawl
    Prathosh, A. P.
    MEDICAL IMAGE ANALYSIS, 2024, 91
  • [9] GAN-based unpaired image-to-image translation for maritime imagery
    Mediavilla, Chelsea
    Sato, Jonathan
    Manzanares, Mitch
    Dotter, Marissa
    Parameswaran, Shibin
    GEOSPATIAL INFORMATICS X, 2020, 11398
  • [10] UNPAIRED IMAGE-TO-IMAGE TRANSLATION BASED DOMAIN ADAPTATION FOR POLYP SEGMENTATION
    Xiong, Xinyu
    Li, Siying
    Li, Guanbin
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,