Evolutionary Diversity Optimization Using Multi-Objective Indicators

被引:26
|
作者
Neumann, Aneta [1 ]
Gao, Wanru [1 ]
Wagner, Markus [1 ]
Neumann, Frank [1 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia
基金
澳大利亚研究理事会;
关键词
Diversity; evolutionary algorithms; features; ALGORITHM;
D O I
10.1145/3321707.3321796
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary diversity optimization aims to compute a set of solutions that are diverse in the search space or instance feature space, and where all solutions meet a given quality criterion. With this paper, we bridge the areas of evolutionary diversity optimization and evolutionary multi-objective optimization. We show how popular indicators frequently used in the area of multi-objective optimization can be used for evolutionary diversity optimization. Our experimental investigations for evolving diverse sets of TSP instances and images according to various features show that two of the most prominent multi-objective indicators, namely the hypervolume indicator and the inverted generational distance, provide excellent results in terms of visualization and various diversity indicators.
引用
收藏
页码:837 / 845
页数:9
相关论文
共 50 条
  • [1] Evolutionary Multi-Objective Optimization
    Deb, Kalyanmoy
    [J]. GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2577 - 2602
  • [2] A Novel Diversity Maintenance Scheme for Evolutionary Multi-objective Optimization
    Gee, Sen Bong
    Qiu, Xin
    Tan, Kay Chen
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2013, 2013, 8206 : 270 - 277
  • [3] Evolutionary multi-objective optimization
    Coello Coello, Carlos A.
    Hernandez Aguirre, Arturo
    Zitzler, Eckart
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) : 1617 - 1619
  • [4] A Multi-objective Optimization Evolutionary Algorithm Addressing Diversity Maintenance
    Shen, Xiaoning
    Zhang, Min
    Li, Tao
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 1, PROCEEDINGS, 2009, : 524 - 527
  • [5] An Efficient Method for Maintaining Diversity in Evolutionary Multi-objective Optimization
    Zheng, Jinhua
    Li, Miqing
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 6, PROCEEDINGS, 2008, : 462 - 467
  • [6] Multi-objective Evolutionary Algorithm using Population Diversity
    Weng Li-guo
    Wang, An
    Xia, Min
    Ji, Zhuangzhuang
    [J]. 2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 995 - 998
  • [7] A Multi-objective Optimization Evolutionary Algorithm with Better Performances on Multiple Indicators
    Chen, Jianguo
    Song, Zhongshan
    Zheng, Bojin
    Zhao, Fan
    Yao, Zhuofu
    [J]. COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, 2010, 107 : 47 - 56
  • [8] A Technique for the Optimization of the Parameters of Technical Indicators with Multi-Objective Evolutionary Algorithms
    Bodas Sagi, Diego J.
    Soltero, Francisco J.
    Ignacio Hidalgo, J.
    Fernandez, Pablo
    Fernandez, F.
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [9] Multi-objective topology optimization using evolutionary algorithms
    Kunakote, Tawatchai
    Bureerat, Sujin
    [J]. ENGINEERING OPTIMIZATION, 2011, 43 (05) : 541 - 557
  • [10] Improving evolutionary multi-objective optimization using genders
    Kowalczuk, Zdzislaw
    Bialaszewski, Tomasz
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 390 - 399