An accuracy study of mesh refinement on mapped grids

被引:0
|
作者
Calhoun, D [1 ]
LeVeque, RJ [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
gas dynamics; finite-volume; finite-difference; Cartesian grid; mapped grids; computational fluid dynamics; adaptive mesh refinement;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We test a high-resolution wave-propagation algorithm for hyperbolic conservation laws on mapped quadrilateral and hexahedral grids in the context of adaptive mesh refinement. We discuss some of the issues related to using non-Cartesian grids with AMR and study a test problem in which a grid refinement interface is fixed in space on a highly skewed portion of a mapped grid. Smooth and shock-wave solutions to the Euler equations are used to investigate the possibility that spurious reflections or other numerical errors might be generated at a grid interface.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 50 条
  • [1] Adaptive mesh refinement for characteristic grids
    Jonathan Thornburg
    [J]. General Relativity and Gravitation, 2011, 43 : 1211 - 1251
  • [2] Adaptive mesh refinement for characteristic grids
    Thornburg, Jonathan
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (05) : 1211 - 1251
  • [3] Adaptive mesh refinement on overlapping grids
    Henshaw, WD
    [J]. ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 59 - 71
  • [4] Adaptive Mesh Refinement on Curvilinear Grids
    Borovikov, Sergey N.
    Kryukov, Igor A.
    Pogorelov, Nikolai V.
    [J]. NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2008, 2009, 406 : 127 - 134
  • [5] LOCAL UNIFORM MESH REFINEMENT WITH MOVING GRIDS
    GROPP, WD
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (03): : 292 - 304
  • [6] ADAPTIVE MESH REFINEMENT ON MOVING QUADRILATERAL GRIDS
    BELL, J
    COLELLA, P
    TRANGENSTEIN, J
    WELCOME, M
    [J]. AIAA 9TH COMPUTATIONAL FLUID DYNAMICS CONFERENCE: A COLLECTION OF TECHNICAL PAPERS, 1989, : 471 - 479
  • [8] Godunov type methods on unstructured grids and local mesh refinement
    Kröner, D
    Gessner, T
    [J]. GODUNOV METHODS: THEORY AND APPLICATIONS, 2001, : 527 - 547
  • [9] A MAPPED POLYNOMIAL METHOD FOR HIGH-ACCURACY APPROXIMATIONS ON ARBITRARY GRIDS
    Adcock, Ben
    Platte, Rodrigo B.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2256 - 2281
  • [10] Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement
    Guzik, Stephen M.
    Weisgraber, Todd H.
    Colella, Phillip
    Alder, Berni J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 : 461 - 487