Concentration Waves of Chemotactic Bacteria: The Discrete Velocity Case

被引:1
|
作者
Calvez, Vincent [1 ,2 ,3 ]
Gosse, Laurent [4 ]
Twarogowska, Monika [3 ,5 ]
机构
[1] Univ Lyon 1, CNRS, Lyon, France
[2] Univ Lyon 1, Inst Camille Jordan, Lyon, France
[3] INRIA, Project Team NUMED, Lyon, France
[4] CNR, IAC, Via Taurini 19, I-00185 Rome, Italy
[5] Ecole Normale Super Lyon, Unite Math Pures & Appl, Lyon, France
来源
基金
欧洲研究理事会;
关键词
KINETIC-MODELS; APPROXIMATION; AGGREGATION;
D O I
10.1007/978-3-319-49262-9_3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The existence of travelling waves for a coupled system of hyperbolic/parabolic equations is established in the case of a finite number of velocities in the kinetic equation. This finds application in collective motion of chemotactic bacteria. The analysis builds on the previous work by the first author (arXiv:1607.00429) in the case of a continuum of velocities. Here, the proof is specific to the discrete setting, based on the decomposition of the population density in special Case's modes. Some counter-intuitive results are discussed numerically, including the co-existence of several travelling waves for some sets of parameters, as well as the possible non-existence of travelling waves.
引用
收藏
页码:79 / 109
页数:31
相关论文
共 50 条
  • [1] Chemotactic waves of bacteria at the mesoscale
    Calvez, Vincent
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (02) : 593 - 668
  • [2] THE DEVELOPMENT OF CONCENTRATION GRADIENTS IN A SUSPENSION OF CHEMOTACTIC BACTERIA
    HILLESDON, AJ
    PEDLEY, TJ
    KESSLER, JO
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1995, 57 (02) : 299 - &
  • [3] Directional persistence of chemotactic bacteria in a traveling concentration wave
    Saragosti, J.
    Calvez, V.
    Bournaveas, N.
    Perthame, B.
    Buguin, A.
    Silberzan, P.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (39) : 16235 - 16240
  • [4] Migration of Chemotactic Bacteria in Soft Agar: Role of Gel Concentration
    Croze, Ottavio A.
    Ferguson, Gail P.
    Cates, Michael E.
    Poon, Wilson C. K.
    [J]. BIOPHYSICAL JOURNAL, 2011, 101 (03) : 525 - 534
  • [5] Shock waves for a discrete velocity gas mixture
    Cercignani, C
    Cornille, H
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (1-2) : 115 - 140
  • [6] Shock Waves for a Discrete Velocity Gas Mixture
    Carlo Cercignani
    Henri Cornille
    [J]. Journal of Statistical Physics, 2000, 99 : 115 - 140
  • [7] Discrete velocity models: The case of mixtures
    Cercignani, C
    Bobylev, AV
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (1-2): : 209 - 216
  • [8] Velocity diagram of traveling waves for discrete reaction–diffusion equations
    M. Al Haj
    R. Monneau
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [9] Shock waves for discrete velocity nonconservative (except mass) models
    Cornille, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (37): : 6479 - 6501
  • [10] CHEMOTACTIC RESPONSES BY MOTILE BACTERIA
    SEYMOUR, FWK
    DOETSCH, RN
    [J]. JOURNAL OF GENERAL MICROBIOLOGY, 1973, 78 (OCT): : 287 - 296