Nonlinear long-wavelength torsional Alfven waves

被引:41
|
作者
Farahani, S. Vasheghani [1 ]
Nakariakov, V. M. [1 ,2 ]
Van Doorsselaere, T. [3 ]
Verwichte, E. [1 ]
机构
[1] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
[2] Russian Acad Sci Pulkovo, Cent Astron Observ, St Petersburg 196140, Russia
[3] Ctr Plasma Astrofys, Dept Math, B-3001 Heverlee, Belgium
基金
英国工程与自然科学研究理事会;
关键词
magnetohydrodynamics (MHD); waves; Sun: corona; Sun: activity; magnetic fields; MAGNETOHYDRODYNAMIC WAVES; CORONAL HOLES; SOLAR CORONA; WIND ACCELERATION; FLUX TUBES; OSCILLATIONS; ENHANCEMENT; PULSATIONS; SIGNATURES; EVOLUTION;
D O I
10.1051/0004-6361/201016063
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We investigate the nonlinear phenomena accompanying long-wavelength torsional waves in solar and stellar coronae. Methods. The second order thin flux-tube approximation is used to determine perturbations of a straight untwisted and non-rotating magnetic flux-tube, nonlinearly induced by long-wavelength axisymmetric magnetohydrodynamic waves of small, but finite amplitude. Results. Propagating torsional waves induce compressible perturbations oscillating with double the frequency of the torsional waves. In contrast with plane shear Alfven waves, the amplitude of compressible perturbations is independent of the plasma-beta and is proportional to the torsional wave amplitude squared. Standing torsional waves induce compressible perturbations of two kinds, that grow with the characteristic time inversely proportional to the sound speed, and that oscillate at double the frequency of the inducing torsional wave. The growing density perturbation saturates at the level, inversely proportional to the sound speed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Nonlinear Evolution of Short-wavelength Torsional Alfven Waves
    Shestov, S. V.
    Nakariakov, V. M.
    Ulyanov, A. S.
    Reva, A. A.
    Kuzin, S. V.
    [J]. ASTROPHYSICAL JOURNAL, 2017, 840 (02):
  • [2] Nonlinear evolution of torsional Alfven waves
    Farahani, S. Vasheghani
    Nakariakov, V. M.
    Verwichte, E.
    Van Doorsselaere, T.
    [J]. ASTRONOMY & ASTROPHYSICS, 2012, 544
  • [3] Nonlinear plane waves in a long-wavelength convection model
    Mancho, AM
    Vázquez, L
    Herrero, H
    Hoyas, S
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (11): : 2867 - 2874
  • [4] Scattering of long-wavelength gravitational waves
    Dolan, Sam R.
    [J]. PHYSICAL REVIEW D, 2008, 77 (04):
  • [5] Torsional Alfven waves
    Eroshenko, Yu N.
    [J]. PHYSICS-USPEKHI, 2020, 63 (01) : 102 - 102
  • [6] Damping of long-wavelength kinetic Alfven fluctuations: Linear theory
    Gary, S. Peter
    Borovsky, Joseph E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A12)
  • [7] Nonlinear effects of micro-cracks on long-wavelength symmetric Lamb waves
    Rjelka, Marek
    Koehler, Bernd
    Mayer, Andreas
    [J]. ULTRASONICS, 2018, 90 : 98 - 108
  • [8] Forest Canopy Waves: The Long-Wavelength Component
    Manuel Pulido
    George Chimonas
    [J]. Boundary-Layer Meteorology, 2001, 100 : 209 - 224
  • [9] Forest canopy waves: The long-wavelength component
    Pulido, M
    Chimonas, G
    [J]. BOUNDARY-LAYER METEOROLOGY, 2001, 100 (02) : 209 - 224
  • [10] LONG-WAVELENGTH ION-ACOUSTIC WAVES
    BATEMAN, G
    [J]. PHYSICAL REVIEW LETTERS, 1972, 29 (22) : 1499 - &