An Adaptive Convergence-Trajectory Controlled Ant Colony Optimization Algorithm With Application to Water Distribution System Design Problems

被引:113
|
作者
Zheng, Feifei [1 ]
Zecchin, Aaron C. [2 ]
Newman, Jeffery P. [2 ]
Maier, Holger R. [1 ,3 ]
Dandy, Graeme C. [2 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Zhejiang, Peoples R China
[2] Univ Adelaide, Adelaide, SA 5005, Australia
[3] Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA, Australia
关键词
Ant colony optimization (ACO); convergence trajectory; parameter adaptive; water distribution system design; problems (WDSDPs); DIFFERENTIAL EVOLUTION; GENETIC ALGORITHMS; METAHEURISTICS; SEARCH;
D O I
10.1109/TEVC.2017.2682899
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms and other meta-heuristics have been employed widely to solve optimization problems in many different fields over the past few decades. Their performance in finding optimal solutions often depends heavily on the parameterization of the algorithm's search operators, which affect an algorithm's balance between search diversification and intensification. While many parameter-adaptive algorithms have been developed to improve the searching ability of meta-heuristics, their performance is often unsatisfactory when applied to real-world problems. This is, at least in part, because available computational budgets are often constrained in such settings due to the long simulation times associated with objective function and/or constraint evaluation, thereby preventing convergence of existing parameter-adaptive algorithms. To this end, this paper proposes an innovative parameter-adaptive strategy for ant colony optimization (ACO) algorithms based on controlling the convergence trajectory in decision space to follow any prespecified path, aimed at finding the best possible solution within a given, and limited, computational budget. The utility of the proposed convergencetrajectory controlled ACO (ACO(CTC)) algorithm is demonstrated using six water distribution system design problems (WDSDPs, a difficult type of combinatorial problem in water resources) with varying complexity. The results show that the proposed ACO(CTC) successfully enables the specified convergence trajectories to be followed by automatically adjusting the algorithm's parameter values. Different convergence trajectories significantly affect the algorithm's final performance (solution quality). The trajectory with a slight bias toward diversification in the first half and more emphasis on intensification during the second half of the search exhibits substantially improved performance compared to the best available ACO variant with the best parameterization (no convergence control) for allWDSDPs and computational scenarios considered. For the two large-scale WDSDPs, new best-known solutions are found by the proposed ACO(CTC).
引用
收藏
页码:773 / 791
页数:19
相关论文
共 50 条
  • [1] Optimal Sensor Deployment to diagnose large-scale Manufacturing Systems using a Convergence-Trajectory Controlled Ant Colony System Algorithm
    Singhania, Rajshekhar
    Sawkar, Chinmay
    Tiwari, Manoj K.
    PROCEEDINGS OF THE ASME 2021 16TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2021), VOL 2, 2021,
  • [2] Research on Analysis of Convergence of an Adaptive Ant Colony Optimization Algorithm
    Jiang, Weijin
    2008 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM AND KNOWLEDGE ENGINEERING, VOLS 1 AND 2, 2008, : 491 - 496
  • [3] An adaptive ant colony system algorithm for continuous-space optimization problems
    李艳君
    吴铁军
    "Journal of Zhejiang University Science J", 2003, (01) : 41 - 47
  • [4] Adaptive ant colony system algorithm for continuous-space optimization problems
    Li, Yanjun
    Wu, Tiejun
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2001, 14 (04):
  • [5] An adaptive ant colony system algorithm for continuous-space optimization problems
    Li Yan-jun
    Wu Tie-jun
    Journal of Zhejiang University-SCIENCE A, 2003, 4 (1): : 40 - 46
  • [6] Ant colony optimization distribution for design of water systems
    Maier, HR
    Simpson, AR
    Zecchin, AC
    Foong, WK
    Phang, KY
    Seah, HY
    Tan, CL
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2003, 129 (03): : 200 - 209
  • [7] An ant colony optimization algorithm with adaptive greedy strategy to optimize path problems
    Li, Wei
    Xia, Le
    Huang, Ying
    Mahmoodi, Soroosh
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 13 (03) : 1557 - 1571
  • [9] An ant colony optimization algorithm with adaptive greedy strategy to optimize path problems
    Wei Li
    Le Xia
    Ying Huang
    Soroosh Mahmoodi
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 1557 - 1571
  • [10] Application of the Adaptive Double-layer Ant Colony Algorithm in UAV Trajectory Planning
    Wang, Chu
    Nan, Ying
    Zhang, Shaoliang
    Jiang, Liang
    2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021), 2021, : 371 - 377