Optimal convergence of the original dg method for the transport-reaction equation on special meshes

被引:75
|
作者
Cockburn, Bernardo [1 ]
Dong, Bo [1 ]
Guzman, Johnny [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
discontinuous Galerkin methods; transport; reaction equation; error estimates;
D O I
10.1137/060677215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the approximation given by the original discontinuous Galerkin method for the transport-reaction equation in d space dimensions is optimal provided the meshes are suitably chosen: the L(2)-norm of the error is of order k + 1 when the method uses polynomials of degree k. These meshes are not necessarily conforming and do not satisfy any uniformity condition; they are required only to be made of simplexes, each of which has a unique outflow face. We also find a new, element-by-element postprocessing of the derivative in the direction of the flow which superconverges with order k + 1.
引用
收藏
页码:1250 / 1265
页数:16
相关论文
共 50 条
  • [1] OPTIMAL CONVERGENCE OF THE ORIGINAL DG METHOD ON SPECIAL MESHES FOR VARIABLE TRANSPORT VELOCITY
    Cockburn, Bernardo
    Dong, Bo
    Guzman, Johnny
    Qian, Jianliang
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) : 133 - 146
  • [2] hp-optimal convergence of the original DG method for linear hyperbolic problems on special simplicial meshes
    Dong, Z.
    Mascotto, L.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [3] The weak Galerkin finite element method for the transport-reaction equation
    Zhang T.
    Zhang S.
    [J]. Journal of Computational Physics, 2020, 410
  • [4] Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations
    Tie Zhang
    Shuhua Zhang
    [J]. Applications of Mathematics, 2015, 60 : 1 - 20
  • [5] Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations
    Zhang, Tie
    Zhang, Shuhua
    [J]. APPLICATIONS OF MATHEMATICS, 2015, 60 (01) : 1 - 20
  • [6] The weak Galerkin finite element method for the transport-reaction equation
    Zhang, Tie
    Zhang, Shangyou
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 410
  • [7] THE OPTIMAL CONTROL FOR A CLASS OF NONLINEAR TRANSPORT-REACTION PROCESSES
    Sun, Ji
    Ma, Bao-Ping
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 2010 - 2014
  • [8] A CONFORMING DG METHOD FOR THE BIHARMONIC EQUATION ON POLYTOPAL MESHES
    Ye, Xiu
    Zhang, Shangyou
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2023, 20 (06) : 855 - 869
  • [9] A computationally efficient method for optimization of transport-reaction processes
    Bendersky, E
    Christofides, PD
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1999, 23 : S455 - S458
  • [10] φ-FEM for the heat equation: optimal convergence on unfitted meshes in space
    Duprez, Michel
    Lleras, Vanessa
    Lozinski, Alexei
    Vuillemot, Killian
    [J]. COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1699 - 1710