Bifurcations for turing instability without SO(2) symmetry

被引:0
|
作者
Ogawa, Toshiyuki [1 ]
Okuda, Takashi [1 ]
机构
[1] Osaka Univ, Div Math Sci, Toyonaka, Osaka 5608531, Japan
关键词
perturbed boundary conditions; imperfect pitchfork bifurcation; turing instability;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the Swift-Hohenberg equation with perturbed boundary conditions. We do not a priori know the eigenfunctions for the linearized problem since the SO(2) symmetry of the problem is broken by perturbation. We show that how the neutral stability curves change and, as a result, how the bifurcation diagrams change by the perturbation of the boundary conditions.
引用
收藏
页码:869 / 877
页数:9
相关论文
共 50 条
  • [1] GLOBAL BIFURCATIONS INTO CHAOS IN SYSTEMS WITH SO(2) SYMMETRY
    RODRIGUEZ, JD
    SCHELL, M
    PHYSICS LETTERS A, 1990, 146 (1-2) : 25 - 31
  • [2] Bifurcations with imperfect SO(2) symmetry and pinning of rotating waves
    Marques, Francisco
    Meseguer, Alvaro
    Lopez, Juan M.
    Rafael Pacheco, J.
    Lopez, Jose M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2152):
  • [3] Stationary localised patterns without Turing instability
    Al Saadi, Fahad
    Worthy, Annette
    Msmali, Ahmed
    Nelson, Mark
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9111 - 9129
  • [4] Symmetric instability without symmetry
    Kanehisa, H
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2005, 83 (01) : 129 - 134
  • [5] Mechanogenetic Coupling of Hydra Symmetry Breaking and Driven Turing Instability Model
    Soriano, Jordi
    Ruediger, Sten
    Pullarkat, Pramod
    Ott, Albrecht
    BIOPHYSICAL JOURNAL, 2009, 96 (04) : 1649 - 1660
  • [6] Turing-Turing and Turing-Hopf bifurcations in a general diffusive Brusselator model
    Chen, Mengxin
    Wu, Ranchao
    Liu, Biao
    Chen, Liping
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (10):
  • [7] ON TURING INSTABILITY IN 2 DIFFUSELY COUPLED SYSTEMS
    KOCAREV, LM
    JANJIC, PA
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (10): : 779 - 784
  • [8] Turing and Turing–Hopf Bifurcations for a Reaction Diffusion Equation with Nonlocal Advection
    Arnaud Ducrot
    Xiaoming Fu
    Pierre Magal
    Journal of Nonlinear Science, 2018, 28 : 1959 - 1997
  • [9] HOMOCLINIC TWIST BIFURCATIONS WITH Z(2) SYMMETRY
    ARONSON, DG
    VANGILS, SA
    KRUPA, M
    JOURNAL OF NONLINEAR SCIENCE, 1994, 4 (03) : 195 - 219
  • [10] ON THE CONVERGENCE RATE OF A SEQUENCE OF HOMOCLINIC BIFURCATIONS IN SYSTEMS WITHOUT A SYMMETRY CONSTRAINT
    ZAKS, MA
    PHYSICS LETTERS A, 1993, 175 (3-4) : 193 - 198