BOLTZMANN-TYPE MODELS WITH UNCERTAIN BINARY INTERACTIONS

被引:17
|
作者
Tosin, Andrea [1 ]
Zanella, Mattia [1 ]
机构
[1] Politecn Torino, Dept Math Sci GL Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Uncertainty quantification; deterministic and stochastic kinetic equations; Boltzmann and Fokker-Planck equations; structure preserving schemes; FOKKER-PLANCK EQUATIONS; KINETIC-MODEL; FUNDAMENTAL DIAGRAMS; HYDRODYNAMIC MODELS; TRAFFIC FLOW; DYNAMICS; PARTICLE; SYSTEMS; DERIVATION;
D O I
10.4310/CMS.2018.v16.n4.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study binary interaction schemes with uncertain parameters for a general class of Boltzmann-type equations with applications in classical gas and aggregation dynamics. We consider deterministic (i.e., a priori averaged) and stochastic kinetic models, corresponding to different ways of understanding the role of uncertainty in the system dynamics, and compare some thermodynamic quantities of interest, such as the mean and the energy, which characterise the asymptotic trends. Furthermore, via suitable scaling techniques we derive the corresponding deterministic and stochastic Fokker-Planck equations in order to gain more detailed insights into the respective asymptotic distributions. We also provide numerical evidences of the trends estimated theoretically by resorting to recently introduced structure preserving uncertainty quantification methods.
引用
收藏
页码:963 / 985
页数:23
相关论文
共 50 条
  • [1] Topological Interactions in a Boltzmann-Type Framework
    Adrien Blanchet
    Pierre Degond
    Journal of Statistical Physics, 2016, 163 : 41 - 60
  • [2] Topological Interactions in a Boltzmann-Type Framework
    Blanchet, Adrien
    Degond, Pierre
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (01) : 41 - 60
  • [3] Boltzmann-type kinetic equations and discrete models
    Bobylev, A., V
    RUSSIAN MATHEMATICAL SURVEYS, 2024, 79 (03) : 459 - 513
  • [4] On Discrete Models of Boltzmann-Type Kinetic Equations
    A. V. Bobylev
    Journal of Mathematical Sciences, 2024, 286 (1) : 14 - 21
  • [5] BOLTZMANN-TYPE MODELS FOR PRICE FORMATION IN THE PRESENCE OF BEHAVIORAL ASPECTS
    Brugna, Carlo
    Toscani, Giuseppe
    NETWORKS AND HETEROGENEOUS MEDIA, 2015, 10 (03) : 543 - 557
  • [6] A discrete Boltzmann-type model of swarming
    Arlotti, L
    Deutsch, A
    Lachowicz, M
    MATHEMATICAL AND COMPUTER MODELLING, 2005, 41 (10) : 1193 - 1201
  • [7] Conservative and non-conservative Boltzmann-type models of semiconductor theory
    Arlotti, L.
    Banasiak, J.
    Ciake, F. L. Ciake
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (09): : 1441 - 1468
  • [8] Breakdown of Boltzmann-type models for the alignment of self-propelled rods
    Murphy, Patrick
    Perepelitsa, Misha
    Timofeyev, Ilya
    Lieber-Kotz, Matan
    Islas, Brandon
    Igoshin, Oleg A.
    MATHEMATICAL BIOSCIENCES, 2024, 376
  • [9] On a Boltzmann-type price formation model
    Burger, Martin
    Caffarelli, Luis
    Markowich, Peter A.
    Wolfram, Marie-Therese
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2157):
  • [10] SPATIALLY HOMOGENEOUS BOLTZMANN-TYPE EQUATIONS
    SZNITMAN, AS
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (04): : 559 - 592