Root-n-consistent estimation in partial linear models with long-memory errors

被引:18
|
作者
Beran, J
Ghosh, S
机构
[1] Univ Konstanz, Dept Econ & Stat, D-78434 Konstanz, Germany
[2] WSL, Birmensdorf, Switzerland
关键词
long memory; long-range dependence; partial linear model; semiparametric estimation; semiparametric regression;
D O I
10.1111/1467-9469.00108
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider estimation of beta in the semiparametric regression model y(i) = x(T)(i)beta f(i/n) + epsilon(i) where x(i) = g(i/n) + e(i), f and g are unknown smooth functions and the processes epsilon(i) and e(i) are stationary with short- or long-range dependence. For the case of i.i.d. errors, Speckman (1988) proposed a root n-consistent estimator of beta. In this paper it is shown that, under suitable regularity conditions, this estimator is asymptotically unbiased and root n-consistent even if the errors exhibit long-range dependence. The orders of the finite sample bias and of the required bandwidth depend on the long-memory parameters. Simulations and a data example illustrate the method.
引用
收藏
页码:345 / 357
页数:13
相关论文
共 50 条