Design of a rhombus-type stick-slip actuator with two driving modes for micropositioning

被引:35
|
作者
Shi, Beichao [1 ]
Wang, Fujun [1 ]
Huo, Zhichen [1 ]
Tian, Yanling [1 ]
Zhao, Xiaolu [1 ]
Zhang, Dawei [1 ]
机构
[1] Tianjin Univ, Sch Mech Engn, Key Lab Mech Theory & Equipment Design, Minist Educ, Tianjin 300354, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Stick-slip actuator; Lateral motion; Symmetric structure; Rhombus-type displacement amplification  mechanism; Double driving foot actuating method; DRIVEN; STAGE;
D O I
10.1016/j.ymssp.2021.108421
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper proposes a novel liner stick-slip actuator with compact structure which can achieve forward and backward motion. A novel rhombus-type displacement amplification mechanism (RTDAM) with symmetric structure is used to generate lateral motion to improve the actuator performance. Theoretical analysis and finite element analysis (FEA) are carried out to calculate the coupling ratio and natural frequency of the system. In addition, a new driving method in which two driving feet act together is proposed, which can improve the load capacity of the actuator. A prototype is fabricated and experimental tests are conducted to investigate its performance. The results indicate that the maximum speed of forward and backward motion are 428.5 mu m/s and 443.2 mu m/s, respectively. Compared with the single foot driving method, the load capacity of the actuator is increased from 1.2 N to 1.6 N by adopting the new driving method. Finally, a micropositioning stage is built utilizing the proposed stick-slip actuator and the experimental results indicate that the stage can work stably.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A piezoelectric stick-slip linear actuator with a rhombus-type flexure hinge mechanism by means of parasitic motion
    Gao, Qi
    Li, Yikang
    Lu, Xiaohui
    Zhang, Chi
    Zhang, Xiaosong
    Cheng, Tinghai
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (09):
  • [2] Design and Experimental Research of a Novel Stick-Slip Type Piezoelectric Actuator
    Zhou, Mingxing
    Fan, Zunqiang
    Ma, Zhichao
    Zhao, Hongwei
    Guo, Yue
    Hong, Kun
    Li, Yuanshang
    Liu, Hang
    Wu, Di
    MICROMACHINES, 2017, 8 (05):
  • [3] A Novel Stick-Slip Type Rotary Piezoelectric Actuator
    Wang, Yuan
    Xu, Minglong
    Shao, Shubao
    Song, Siyang
    Shao, Yan
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
  • [4] Design of Test Platform for Piezoelectric Stick-Slip Actuator
    Liu, Shuzhen
    Zhou, Xiaofeng
    Zhang, Yubao
    Zhang, Wenjun
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING TECHNOLOGY (CSET2015), MEDICAL SCIENCE AND BIOLOGICAL ENGINEERING (MSBE2015), 2016, : 209 - 214
  • [5] Design and study of a separated stick-slip piezoelectric actuator
    Jia, Xiaoli
    Sun, Shilong
    Huang, Shutong
    Zhang, Yanbo
    Ke, Liaoliang
    Yang, Jie
    Kitipornchai, Sritawat
    AUSTRALIAN JOURNAL OF MECHANICAL ENGINEERING, 2024,
  • [6] A Symmetrical Hybrid Driving Waveform for a Linear Piezoelectric Stick-Slip Actuator
    Li, Hengyu
    Li, Yikang
    Cheng, Tinghai
    Lu, Xiaohui
    Zhao, Hongwei
    Gao, Haibo
    IEEE ACCESS, 2017, 5 : 16885 - 16894
  • [7] Stick-slip based micropositioning stage for transmission electron microscope
    Holub, O.
    Spiller, M.
    Hurak, Z.
    9TH IEEE INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL, VOLS 1 AND 2, PROCEEDINGS, 2006, : 484 - +
  • [8] Voltage/Frequency Proportional Control of Stick-Slip Micropositioning Systems
    Rakotondrabe, Micky
    Haddab, Yassine
    Lutz, Philippe
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2008, 16 (06) : 1316 - 1322
  • [9] Design, analysis and experimental performance of a novel stick-slip type piezoelectric rotary actuator based on variable force couple driving
    Wang, Shupeng
    Rong, Weibin
    Wang, Lefeng
    Pei, Zhichao
    Sun, Lining
    SMART MATERIALS AND STRUCTURES, 2017, 26 (05)
  • [10] A Novel Stick-Slip Piezoelectric Actuator Based on a Triangular Compliant Driving Mechanism
    Zhang, Yangkun
    Peng, Yuxin
    Sun, Zhenxing
    Yu, Haoyong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (07) : 5374 - 5382