relaxation limit;
bipolar isentropic models;
semiconductors;
H-s-solution;
energy estimates;
D O I:
10.1016/j.jmaa.2007.03.068
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In the paper, we discuss the relaxation limit of a bipolar isentropic hydrodynamical models for semiconductors with small momentum relaxation time. With the help of the Maxwell iteration, we prove that, as the relaxation time tends to zero, periodic initial-value problems of a scaled bipolar isentropic hydrodynamic model have unique smooth solutions existing in the time interval where the classical drift-diffusion model has smooth solutions. Meanwhile, we justify a formal derivation of the corresponding drift-diffusion model from the bipolar hydrodynamic model. (c) 2007 Elsevier Inc. All rights reserved.
机构:
Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R ChinaCapital Normal Univ, Dept Math, Beijing 100037, Peoples R China
Zhang, Guojing
Li, Hai-Liang
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
Capital Normal Univ, Inst Math & Interdisciplinary Sci, Beijing 100037, Peoples R ChinaCapital Normal Univ, Dept Math, Beijing 100037, Peoples R China
Li, Hai-Liang
Zhang, Kaijun
论文数: 0引用数: 0
h-index: 0
机构:
NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R ChinaCapital Normal Univ, Dept Math, Beijing 100037, Peoples R China