Investigation of the quantum confinement anisotropy in a submonolayer quantum dot infrared photodetector

被引:0
|
作者
Alzeidan, Ahmad [1 ]
de Cantalice, Tiago F. [1 ]
Garcia Jr, Ailton J. [2 ]
Deneke, Christoph F. [2 ,3 ]
Quivy, Alain A. [1 ]
机构
[1] Univ Sao Paulo, Inst Phys, Sao Paulo, SP, Brazil
[2] Brazilian Nanotechnol Natl Lab LNNano CNPEM, Campinas, SP, Brazil
[3] Univ Estadual Campinas, Inst Fis Gleb Wataghin, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
submonolayer; quantum dot; infrared detector; molecular beam epitaxy; GaAs; photolithography;
D O I
10.1109/sbmicro.2019.8919349
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A submonolayer quantum dot infrared photodetector (SML-QDIP) was grown on a GaAs(001) substrate by molecular beam epitaxy and processed using conventional optical lithography, wet etching and electron-beam metallization. Additionally, a side of the device was polished at 45 degrees in order to allow optical measurements with s- and p- polarized light. The electro-optical properties of the device were investigated both in normal incidence and at 45 degrees in order to study the quantum confinement of the SML-QD along the lateral and vertical directions. The s-to-p photocurrent ratio was found to be between 0.10 and 0.43, showing that, in this new type of quantum dot, the lateral confinement is still weaker than along the vertical direction, but is better than the one of conventional QDs fabricated in the Stranski-Krastanov growth mode. The maximum specific detectivity in normal incidence was 1.3x10(11) cm Hz1/2/W at 30 K and 0.9V.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Submonolayer quantum dot infrared photodetector
    Ting, David Z. -Y.
    Bandara, Sumith V.
    Gunapala, Sarath D.
    Mumolo, Jason M.
    Keo, Sam A.
    Hill, Cory J.
    Liu, John K.
    Blazejewski, Edward R.
    Rafol, Sir B.
    Chang, Yia-Chung
    APPLIED PHYSICS LETTERS, 2009, 94 (11)
  • [2] Investigation of detection wavelength in quantum dot infrared photodetector
    Hwang, SH
    Shin, JC
    Song, JD
    Choi, WJ
    Lee, JI
    Han, H
    Kim, EK
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (01) : 202 - 205
  • [3] Submonolayer quantum dot quantum cascade long-wave infrared photodetector grown on Ge substrate
    Shen, Zhijian
    Deng, Zhuo
    Zhao, Xuyi
    Huang, Jian
    Cao, Chunfang
    Zou, Xinbo
    Liu, Fengyu
    Gong, Qian
    Chen, Baile
    APPLIED PHYSICS LETTERS, 2021, 118 (08)
  • [4] Quantum dot infrared photodetector
    Liu, HC
    Fafard, S
    Dudek, R
    Wasilewski, ZR
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES X, 2002, 4646 : 94 - 99
  • [5] Quantum dot infrared photodetector
    Liu, HC
    OPTO-ELECTRONICS REVIEW, 2003, 11 (01) : 1 - 5
  • [6] Quantum dot quantum cascade infrared photodetector
    Wang, Xue-Jiao
    Zhai, Shen-Qiang
    Zhuo, Ning
    Liu, Jun-Qi
    Liu, Feng-Qi
    Liu, Shu-Man
    Wang, Zhan-Guo
    APPLIED PHYSICS LETTERS, 2014, 104 (17)
  • [7] Photovoltaic quantum dot quantum cascade infrared photodetector
    Barve, A. V.
    Krishna, S.
    APPLIED PHYSICS LETTERS, 2012, 100 (02)
  • [8] Theoretical Investigation of Polarization Sensitive Terahertz Quantum Dot Infrared Photodetector
    Singh, Satish Kumar
    Kumar, Jitendra
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (04) : 441 - 444
  • [9] Long wavelength infrared photodetector using submonolayer quantum dots
    Kim, Jun Oh
    Ku, Zahyun
    Urbas, Augustine
    Kang, Sang-Woo
    Lee, Sang Jun
    INFRARED TECHNOLOGY AND APPLICATIONS XLII, 2016, 9819
  • [10] Broadband Quantum-Dot Infrared Photodetector
    Lin, Wei-Hsun
    Tseng, Chi-Che
    Chao, Kuang-Ping
    Kung, Shu-Yen
    Lin, Shih-Yen
    Wu, Meng-Chyi
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (13) : 963 - 965