Cluster PCA for outliers detection in high-dimensional data

被引:10
|
作者
Stefatos, George [1 ]
Ben Hamza, A. [1 ]
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ, Canada
关键词
D O I
10.1109/ICSMC.2007.4414244
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a new method to detect multiple outliers in high-dimensional datasets using the concepts of hierarchical clustering and principal component analysis. The proposed algorithm is computationally fast and robust to outliers detection. A comparative study with existing techniques is performed on both low and high dimensional datasets. Our experimental results demonstrate an improved performance of our algorithm in comparison with existing multivariate outlier detection techniques.
引用
收藏
页码:3961 / 3966
页数:6
相关论文
共 50 条
  • [1] Sparse PCA for High-Dimensional Data With Outliers
    Hubert, Mia
    Reynkens, Tom
    Schmitt, Eric
    Verdonck, Tim
    TECHNOMETRICS, 2016, 58 (04) : 424 - 434
  • [2] Robust PCA for high-dimensional data
    Hubert, M
    Rousseeuw, PJ
    Verboven, S
    DEVELOPMENTS IN ROBUST STATISTICS, 2003, : 169 - 179
  • [3] Detecting and ranking outliers in high-dimensional data
    Kaur, Amardeep
    Datta, Amitava
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2019, 11 (01) : 75 - 87
  • [4] Hiding outliers in high-dimensional data spaces
    Steinbuss G.
    Böhm K.
    International Journal of Data Science and Analytics, 2017, 4 (3) : 173 - 189
  • [5] Detecting and ranking outliers in high-dimensional data
    Amardeep Kaur
    Amitava Datta
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2019, 11 : 75 - 87
  • [6] A Compressed PCA Subspace Method for Anomaly Detection in High-Dimensional Data
    Ding, Qi
    Kolaczyk, Eric D.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) : 7419 - 7433
  • [7] Multiple outliers detection in sparse high-dimensional regression
    Wang, Tao
    Li, Qun
    Chen, Bin
    Li, Zhonghua
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (01) : 89 - 107
  • [8] PCA learning for sparse high-dimensional data
    Hoyle, DC
    Rattray, M
    EUROPHYSICS LETTERS, 2003, 62 (01): : 117 - 123
  • [9] Detecting Projected Outliers in High-Dimensional Data Streams
    Zhang, Ji
    Gao, Qigang
    Wang, Hai
    Liu, Qing
    Xu, Kai
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2009, 5690 : 629 - +
  • [10] Detection of outliers in high-dimensional data using nu-support vector regression
    Mohammed Rashid, Abdullah
    Midi, Habshah
    Dhhan, Waleed
    Arasan, Jayanthi
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (10) : 2550 - 2569