Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing

被引:64
|
作者
Wang, Rui [1 ,2 ]
Shi, Tuo [1 ,2 ]
Zhang, Xumeng [1 ,2 ]
Wang, Wei [1 ]
Wei, Jinsong [1 ,3 ]
Lu, Jian [1 ,3 ]
Zhao, Xiaolong [1 ]
Wu, Zuheng [1 ,2 ]
Cao, Rongrong [1 ,2 ]
Long, Shibing [3 ]
Liu, Qi [1 ,2 ]
Liu, Ming [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
来源
MATERIALS | 2018年 / 11卷 / 11期
基金
中国国家自然科学基金;
关键词
memristor; artificial synapse; neuromorphic computing; RESISTIVE MEMORY; SYNAPTIC DEVICE; PLASTICITY; TERM;
D O I
10.3390/ma11112102
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Synaptic devices with bipolar analog resistive switching behavior are the building blocks for memristor-based neuromorphic computing. In this work, a fully complementary metal-oxide semiconductor (CMOS)-compatible, forming-free, and non-filamentary memristive device (Pd/Al2O3/TaOx/Ta) with bipolar analog switching behavior is reported as an artificial synapse for neuromorphic computing. Synaptic functions, including long-term potentiation/depression, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP), are implemented based on this device; the switching energy is around 50 pJ per spike. Furthermore, for applications in artificial neural networks (ANN), determined target conductance states with little deviation (<1%) can be obtained with random initial states. However, the device shows non-linear conductance change characteristics, and a nearly linear conductance change behavior is obtained by optimizing the training scheme. Based on these results, the device is a promising emulator for biology synapses, which could be of great benefit to memristor-based neuromorphic computing.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Organic iontronic memristors for artificial synapses and bionic neuromorphic computing
    Xia, Yang
    Zhang, Cheng
    Xu, Zheng
    Lu, Shuanglong
    Cheng, Xinli
    Wei, Shice
    Yuan, Junwei
    Sun, Yanqiu
    Li, Yang
    NANOSCALE, 2024, 16 (04) : 1471 - 1489
  • [2] Neuromorphic Computing of Optoelectronic Artificial BFCO/AZO Heterostructure Memristors Synapses
    Fan, Zhao-Yuan
    Tang, Zhenhua
    Fang, Jun-Lin
    Jiang, Yan-Ping
    Liu, Qiu-Xiang
    Tang, Xin-Gui
    Zhou, Yi-Chun
    Gao, Ju
    NANOMATERIALS, 2024, 14 (07)
  • [3] Memristive Artificial Synapses for Neuromorphic Computing
    Huang, Wen
    Xia, Xuwen
    Zhu, Chen
    Steichen, Parker
    Quan, Weidong
    Mao, Weiwei
    Yang, Jianping
    Chu, Liang
    Li, Xing'ao
    NANO-MICRO LETTERS, 2021, 13 (01)
  • [4] Memristive Artificial Synapses for Neuromorphic Computing
    Wen Huang
    Xuwen Xia
    Chen Zhu
    Parker Steichen
    Weidong Quan
    Weiwei Mao
    Jianping Yang
    Liang Chu
    Xing'ao Li
    Nano-Micro Letters, 2021, 13 (05) : 224 - 251
  • [5] Memristive Artificial Synapses for Neuromorphic Computing
    Wen Huang
    Xuwen Xia
    Chen Zhu
    Parker Steichen
    Weidong Quan
    Weiwei Mao
    Jianping Yang
    Liang Chu
    Xing’ao Li
    Nano-Micro Letters, 2021, 13
  • [6] Transparent artificial synapses based on Ag/Al-doped ZnO/ITO memristors for bioinspired neuromorphic computing
    Tang, Zhenhua
    Fan, Zhao-Yuan
    Fang, Jun-Lin
    Zhang, Li
    Sun, Qi-Jun
    Zhang, Dan
    Jiang, Yan-Ping
    Liu, Qiu-Xiang
    Tang, Xin-Gui
    Zhou, Yi-Chun
    Jiang, Xiujuan
    MATERIALS LETTERS, 2024, 354
  • [7] Memristors based on 2D MoSe2 nanosheets as artificial synapses and nociceptors for neuromorphic computing
    Duan, Huan
    Wang, Dehui
    Gou, Jingxi
    Guo, Feng
    Jie, Wenjing
    Hao, Jianhua
    NANOSCALE, 2023, 15 (23) : 10089 - 10096
  • [8] Memristors Act as Synapses in Neuromorphic Architectures
    Mandal, Santanu
    Saha, Amit
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES), 2016, : 788 - 792
  • [9] Light-Emitting Artificial Synapses for Neuromorphic Computing
    Zhu, Chen
    Huang, Wen
    Li, Wei
    Yu, Xuegong
    Li, Xing'ao
    RESEARCH, 2022, 2022
  • [10] Skyrmion-based artificial synapses for neuromorphic computing
    Song, Kyung Mee
    Jeong, Jae-Seung
    Pan, Biao
    Zhang, Xichao
    Xia, Jing
    Cha, Sunkyung
    Park, Tae-Eon
    Kim, Kwangsu
    Finizio, Simone
    Raabe, Joerg
    Chang, Joonyeon
    Zhou, Yan
    Zhao, Weisheng
    Kang, Wang
    Ju, Hyunsu
    Woo, Seonghoon
    NATURE ELECTRONICS, 2020, 3 (03) : 148 - 155