Phase transitions of III-V compound semiconductor surfaces in the MOVPE environment

被引:0
|
作者
Fu, Q [1 ]
Begarney, MJ [1 ]
Li, CH [1 ]
Law, DC [1 ]
Hicks, RF [1 ]
机构
[1] Univ Calif Los Angeles, Dept Chem Engn, Los Angeles, CA 90095 USA
关键词
metalorganic vapor phase epitaxy; semiconducting gallium arsenide; semiconducting indium phosphide;
D O I
10.1016/S0022-0248(01)00896-X
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The structure of gallium arsenide and indium phosphide (00 1) surfaces in the metalorganic vapor-phase epitaxy (MOVPE) environment has been investigated. During growth at V/III ratios in excess of 10, both materials are terminated with group V ad-dimers (As or P), alkyl groups and hydrogen atoms. These species sit on top of a complete layer of the group V atoms. As the V/III ratio decreases, the top layer of arsenic or phosphorous desorbs from the surface. However, the resulting structures are different on GaAs and InP (0 0 1). In the former case, the phase transition occurs with gallium out-diffusion and nucleation of elongated islands. These islands have a beta2(2 x 4) structure that contains only 0.75 monolayer of arsenic dimers. The resulting surface is rough, exposing on average six atomic layers. Conversely, on InP (0 0 1), no indium out-diffusion occurs following desorption of the phosphorous ad-dimers. Instead, the underlying P atoms dimerize, forming a (2 x 1) structure with a phosphorous coverage of 1.0 monolayer. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:405 / 409
页数:5
相关论文
共 50 条
  • [1] MODELS AND MECHANISMS OF III-V COMPOUND SEMICONDUCTOR GROWTH BY MOVPE
    JENSEN, KF
    MOUNTZIARIS, TJ
    FOTIADIS, DI
    III-V HETEROSTRUCTURES FOR ELECTRONIC / PHOTONIC DEVICES, 1989, 145 : 107 - 118
  • [2] III-V compound semiconductor (001) surfaces
    W.G. Schmidt
    Applied Physics A, 2002, 75 : 89 - 99
  • [3] III-V compound semiconductor (001) surfaces
    Schmidt, WG
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 75 (01): : 89 - 99
  • [4] Charged steps on III-V compound semiconductor surfaces
    Heinrich, M
    Domke, C
    Ebert, P
    Urban, K
    PHYSICAL REVIEW B, 1996, 53 (16): : 10894 - 10897
  • [5] III-V Compound Semiconductor Nanowires
    Joyce, H. J.
    Paiman, S.
    Gao, Q.
    Tan, H. H.
    Kim, Y.
    Smith, L. M.
    Jackson, H. E.
    Yarrison-Rice, J. M.
    Zhang, X.
    Zou, J.
    Jagadish, C.
    2009 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE, 2009, : 59 - +
  • [6] MOVPE technology for the growth of III-V semiconductor structures
    Garcia, I.
    Galiana, B.
    Rey-Stolle, I.
    Algora, C.
    2007 SPANISH CONFERENCE ON ELECTRON DEVICES, PROCEEDINGS, 2007, : 17 - +
  • [7] III-V Compound Semiconductor Nanowires
    Paiman, S.
    Joyce, H. J.
    Kang, J. H.
    Gao, Q.
    Tan, H. H.
    Kim, Y.
    Zhang, X.
    Zou, J.
    Jagadish, C.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 155 - +
  • [8] Scanning tunneling microscopy of III-V compound semiconductor (001) surfaces
    Xue, QK
    Hashizume, T
    Sakurai, T
    PROGRESS IN SURFACE SCIENCE, 1997, 56 (1-2) : 1 - 131
  • [9] PHASE-TRANSITION ON III-V COMPOUND SEMICONDUCTOR SURFACES OBSERVED BY AN IMPROVED RHEED TECHNIQUE
    YAMAGUCHI, H
    HORIKOSHI, Y
    JOURNAL OF CRYSTAL GROWTH, 1993, 127 (1-4) : 976 - 980
  • [10] Defects in III-V semiconductor surfaces
    Ebert, P
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 75 (01): : 101 - 112