Development of a TES-Based Anti-coincidence Detector for Future x-Ray Observatories

被引:6
|
作者
Bailey, C. N. [1 ]
Adams, J. S. [2 ]
Bandler, S. R. [3 ,4 ]
Chervenak, J. A.
Eckart, M. E. [2 ]
Ewin, A. J.
Finkbeiner, F. M. [5 ]
Kelley, R. L.
Kilbourne, C. A.
Porter, F. S.
Sadleir, J. E.
Smith, S. J. [2 ]
Sultana, M.
机构
[1] NASA, Goddard Space Flight Ctr, Postdoctoral Program, Greenbelt, MD 20771 USA
[2] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA
[3] CRESST, College Pk, MD 20742 USA
[4] Univ Maryland, College Pk, MD 20742 USA
[5] Wyle Informat Syst, Mclean, VA 22102 USA
关键词
Transition edge sensor (TES); Anti-coincidence detector; Quasiparticle trapping;
D O I
10.1007/s10909-012-0567-x
中图分类号
O59 [应用物理学];
学科分类号
摘要
Microcalorimeters onboard future x-ray observatories require an anti-coincidence detector to remove environmental backgrounds. In order to most effectively integrate this anti-coincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.
引用
收藏
页码:236 / 241
页数:6
相关论文
共 50 条
  • [1] Development of a TES-Based Anti-coincidence Detector for Future x-Ray Observatories
    C. N. Bailey
    J. S. Adams
    S. R. Bandler
    J. A. Chervenak
    M. E. Eckart
    A. J. Ewin
    F. M. Finkbeiner
    R. L. Kelley
    C. A. Kilbourne
    F. S. Porter
    J. E. Sadleir
    S. J. Smith
    M. Sultana
    [J]. Journal of Low Temperature Physics, 2012, 167 : 236 - 241
  • [2] Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays
    S. E. Busch
    W. S. Yoon
    J. S. Adams
    C. N. Bailey
    S. R. Bandler
    J. A. Chervenak
    M. E. Eckart
    A. J. Ewin
    F. M. Finkbeiner
    R. L. Kelley
    C. A. Kilbourne
    S.-J. Lee
    J.-P. Porst
    F. S. Porter
    J. E. Sadleir
    S. J. Smith
    M. Sultana
    [J]. Journal of Low Temperature Physics, 2016, 184 : 23 - 29
  • [3] Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays
    Busch, S. E.
    Yoon, W. S.
    Adams, J. S.
    Bailey, C. N.
    Bandler, S. R.
    Chervenak, J. A.
    Eckart, M. E.
    Ewin, A. J.
    Finkbeiner, F. M.
    Kelley, R. L.
    Kilbourne, C. A.
    Lee, S. -J.
    Porst, J. -P.
    Porter, F. S.
    Sadleir, J. E.
    Smith, S. J.
    Sultana, M.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) : 23 - 29
  • [4] Development of TES-based X-ray Microcalorimeters for HUBS
    Wang, Y. R.
    Wang, S. F.
    Li, F. J.
    Liang, Y. J.
    Ding, J.
    Chen, Y. L.
    Cui, W.
    Huang, R.
    Hua, X. Y.
    Jin, H.
    Wang, G. L.
    Zhang, S.
    Zhang, Y. N.
    Zhou, Y.
    [J]. SPACE TELESCOPES AND INSTRUMENTATION 2020: ULTRAVIOLET TO GAMMA RAY, 2021, 11444
  • [5] Development of TES-based detectors array for the X-ray Integral Field Unit (X-IFU) on the future X-Ray Observatory Athena
    Gottardi, L.
    Akamatsu, H.
    Barret, D.
    Bruijn, M. P.
    den Hartog, B. H.
    den Herder, J. -W.
    Hoevers, H. F. C.
    Kiviranta, M.
    van der Kuur, J.
    van der Linden, A. J.
    Jackson, B. D.
    Janibunathan, M.
    Ridder, M. L.
    [J]. SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY, 2014, 9144
  • [6] Data Acquisition and Analysis for a TES-Based X-Ray Spectrometer
    Jingkai Xia
    Shuo Zhang
    Jinping Yang
    Yanru Song
    Zhi Liu
    [J]. Journal of Low Temperature Physics, 2022, 209 : 1017 - 1023
  • [7] Data Acquisition and Analysis for a TES-Based X-Ray Spectrometer
    Xia, Jingkai
    Zhang, Shuo
    Yang, Jinping
    Song, Yanru
    Liu, Zhi
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2022, 209 (5-6) : 1017 - 1023
  • [8] Integration of a TES-based X-ray spectrometer in a kaonic atom experiment
    T. Hashimoto
    D. A. Bennett
    W. B. Doriese
    M. S. Durkin
    J. W. Fowler
    J. D. Gard
    R. Hayakawa
    T. Hayashi
    G. C. Hilton
    Y. Ichinohe
    S. Ishimoto
    K. M. Morgan
    H. Noda
    G. C. O’Neil
    S. Okada
    C. D. Reintsema
    D. R. Schmidt
    S. Suzuki
    D. S. Swetz
    H. Tatsuno
    J. N. Ullom
    S. Yamada
    [J]. Journal of Low Temperature Physics, 2020, 199 : 1018 - 1026
  • [9] Integration of a TES-based X-ray spectrometer in a kaonic atom experiment
    Hashimoto, T.
    Bennett, D. A.
    Doriese, W. B.
    Durkin, M. S.
    Fowler, J. W.
    Gard, J. D.
    Hayakawa, R.
    Hayashi, T.
    Hilton, G. C.
    Ichinohe, Y.
    Ishimoto, S.
    Morgan, K. M.
    Noda, H.
    O'Neil, G. C.
    Okada, S.
    Reintsema, C. D.
    Schmidt, D. R.
    Suzuki, S.
    Swetz, D. S.
    Tatsuno, H.
    Ullom, J. N.
    Yamada, S.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (3-4) : 1018 - 1026
  • [10] Development of a Real-Time Pulse Processing Algorithm for TES-Based X-Ray Microcalorimeters
    Tan, Hui
    Hennig, Wolfgang
    Warburton, William K.
    Doriese, W. Bertrand
    Kilbourne, Caroline A.
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2011, 21 (03) : 276 - 280