Continuum Damage Mechanics Modeling of Creep in DS GTD-111™ Superalloy

被引:1
|
作者
Sondhi, Sanjay Kumar [1 ]
Singh, Gaurav [1 ]
Mastromatteo, Francesco [2 ]
机构
[1] GE Global Res Ctr, Mat Res Lab, Bangalore, Karnataka, India
[2] GE Oil & Gas Nuovo Pignone, Florence, Italy
来源
EURO SUPERALLOYS 2010 | 2011年 / 278卷
关键词
Superalloy; Creep model; Continuum Damage Mechanics; GTD-111;
D O I
10.4028/www.scientific.net/AMR.278.234
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Safe extrapolation of short-term creep data requires development of creep models where (a) the constitutive laws are physics based, and (b) majority of model parameters are calculated rather than empirically fitted. This paper details the structure of such a physics-based creep model and its application to DS GTD-111 (TM) superalloy. The constitutive creep law is derived from the kinetics of dislocation-particle interactions in the presence of thermal activation. This constitutive creep law is further coupled with the evolution kinetics of controlling microstructural parameters and associated damages. The model is expected to provide vital inputs for component design as well as remaining life assessment. (GTD-111 (TM) is a trademark of the General Electric Company).
引用
收藏
页码:234 / +
页数:2
相关论文
共 50 条
  • [1] Dislocation network formation during creep in Ni-base superalloy GTD-111
    Said, NA
    Sajjadi, SA
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 339 (1-2): : 103 - 108
  • [2] Pulsed Laser Repair of GTD-111 Directionally Solidified Superalloy
    Li, L.
    Deceuster, A.
    Zhang, V.
    Mahapatra, M.
    [J]. TRENDS IN WELDING RESEARCH, 2009, : 652 - 659
  • [3] The effect of laser pressure welding parameters on GTD-111 superalloy microstructure
    Wei, Zhongbin
    Taheri, Morteza
    Li, Chunfeng
    Mehrez, Sadok
    [J]. MATERIALS LETTERS, 2022, 316
  • [4] Analysis of a Directionally Solidified (DS) GTD-111 Turbine Blade Failure
    Khier Sabri
    Mohamed Gaceb
    Mohamed Ouali Si-Chaib
    [J]. Journal of Failure Analysis and Prevention, 2020, 20 : 1162 - 1174
  • [5] Analysis of a Directionally Solidified (DS) GTD-111 Turbine Blade Failure
    Sabri, Khier
    Gaceb, Mohamed
    Si-Chaib, Mohamed Ouali
    [J]. JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2020, 20 (04) : 1162 - 1174
  • [6] Characterization of the Creep Deformation and Rupture Behavior of DS GTD-111 Using the Kachanov-Rabotnov Constitutive Model
    Stewart, Calvin M.
    Gordon, Ali P.
    Hogan, Erik A.
    Saxena, Ashok
    [J]. JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2011, 133 (02):
  • [7] TLP Bonding of DS Ni Base Superalloy, GTD-111 Using Mixed Powder of Base Metal and Filler Metal
    Lee, B. K.
    Han, T. K.
    Song, W. Y.
    Ye, C. H.
    Kang, C. H.
    [J]. THERMEC 2006 SUPPLEMENT: 5TH INTERNATIONAL CONFERENCE ON PROCESSING AND MANUFACTURING OF ADVANCED MATERIALS, 2007, 15-17 : 894 - 899
  • [8] Elevated temperature fatigue crack growth in directionally solidified GTD-111 superalloy
    Highsmith, S
    Johnson, WS
    [J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2006, 29 (01) : 11 - 22
  • [9] Aluminide Coating Formation on Internal Passages of GTD-111 Superalloy by Slurry Technique
    Shirvani, K.
    Firouzi, A.
    [J]. HIGH TEMPERATURE CORROSION AND PROTECTION OF MATERIALS 7, PTS 1 AND 2, 2008, 595-598 : 185 - 190
  • [10] An investigation on the coarsening behavior of γ′ precipitate in GTD-111 Ni-base superalloy
    Berahmand, Mohammad
    Sajjadi, S. A.
    [J]. PHASE TRANSITIONS, 2012, 85 (1-2) : 1 - 12