Robust fusion for RGB-D tracking using CNN features

被引:15
|
作者
Wang, Yong [1 ,2 ]
Wei, Xian [3 ]
Shen, Hao [4 ,5 ]
Ding, Lu [6 ]
Wan, Jiuqing [7 ]
机构
[1] Sun Yat Sen Univ, Sch Aeronaut & Astronaut, Guangzhou, Guangdong, Peoples R China
[2] Univ Ottawa, Sch Elect & Comp Sci, Ottawa, ON, Canada
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou, Peoples R China
[4] Tech Univ Munich, Munich, Germany
[5] Fortiss GmbH, Munich, Germany
[6] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
[7] Beijing Univ Aeronaut & Astronaut, Dept Automat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-D tracking; Robust fusion; Hierarchical convolutional neural network; Correlation filter tracking; DEEP CONVOLUTIONAL NETWORKS; VISUAL TRACKING; OBJECT TRACKING; MODEL; TIME;
D O I
10.1016/j.asoc.2020.106302
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, RGB-D sensors have become popular. Many computer vision problems can be better dealt with depth data. It is a challenging problem to integrate depth data into a visual object tracker to address the problems such as scale change and occlusion. In this paper, we propose a robust fusion based RGB-D tracking method. Specifically, hierarchical convolutional neural network (CNN) features are first adopted to encode RGB and depth images separately. Next, target is tracked based on correlation filter tracking framework. Then the results of each CNN feature are localized according to the tracking results in a short period of time. Finally, the target is localized by jointly fusing the results of RGB and depth images. Model updating is finally carried out according to the differences between RGB and depth images. Experiments on the University of Birmingham RGB-D Tracking Benchmark (BTB) and the Princeton RGB-D Tracking Benchmark (PTB) achieve comparable results to state-of-the-art methods. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Robust RGB-D tracking via compact CNN features
    Wang, Yong
    Wei, Xian
    Luo, Lingkun
    Wen, Wen
    Wang, Yang
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 96
  • [2] RGB-D Fusion: Real-time Robust Tracking and Dense Mapping with RGB-D Data Fusion
    Lee, Seong-Oh
    Lim, Hwasup
    Kim, Hyoung-Gon
    Ahn, Sang Chul
    [J]. 2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 2749 - 2754
  • [3] Robust human tracking using multiple RGB-D cameras
    Hu, Yongli
    Ma, Jun
    Sun, Yanfeng
    Yin, Baocai
    [J]. Journal of Information and Computational Science, 2014, 11 (01): : 311 - 322
  • [4] 3D Tracker-Level Fusion for Robust RGB-D Tracking
    An, Ning
    Zhao, Xiao-Guang
    Hou, Zeng-Guang
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (08): : 1870 - 1881
  • [5] Robust RGB-D Fusion for Saliency Detection
    Wu, Zongwei
    Gobichettipalayam, Shriarulmozhivarman
    Tamadazte, Brahim
    Allibert, Guillaume
    Paudel, Danda Pani
    Demonceaux, Cedric
    [J]. 2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 403 - 413
  • [6] A Robust Fusion Method For RGB-D SLAM
    Liu, Tong
    Mang, Xiaowei
    Wei, Ziang
    Yuan, Zejian
    [J]. 2013 CHINESE AUTOMATION CONGRESS (CAC), 2013, : 474 - 481
  • [7] Robust RGB-D Odometry Using Point and Line Features
    Lu, Yan
    Song, Dezhen
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3934 - 3942
  • [8] Robust RGB-D Hand Tracking Using Deep Learning Priors
    Sanchez-Riera, Jordi
    Srinivasan, Kathiravan
    Hua, Kai-Lung
    Cheng, Wen-Huang
    Hossain, M. Anwar
    Alhamid, Mohammed F.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (09) : 2289 - 2301
  • [9] Robust Tracking and Mapping with a Handheld RGB-D Camera
    Lee, Kyoung-Rok
    Truong Nguyen
    [J]. 2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 1120 - 1127
  • [10] Robust RGB-D Visual Odometry Using Point and Line Features
    Sun, Chao
    Qiao, Nianzu
    Ge, Wei
    Sun, Jia
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3826 - 3831