Chaoticity in the vicinity of complex unstable periodic orbits in galactic type potentials

被引:3
|
作者
Patsis, P. A. [1 ]
Manos, T. [2 ]
Chaves-Velasquez, L. [3 ,4 ,5 ]
Skokos, Ch [6 ]
Puerari, I [7 ]
机构
[1] Acad Athens, Res Ctr Astron, Soranou Efessiou 4, Athens 11527, Greece
[2] CY Cergy Paris Univ, Lab Phys Theor & Modelisat, CNRS, UMR 8089, F-95302 Cergy Pontoise, France
[3] Univ Narino, Astron Observ, Sede VIIS, Ave Panamer, Pasto, Narino, Colombia
[4] Univ Narino, Dept Fis, Torobajo Calle 18 Carrera 50, Pasto, Narino, Colombia
[5] Univ Nacl Autonoma Mexico, Inst Radioastron & Astrofis, Apdo Postal 3-72, Morelia 58089, Michoacan, Mexico
[6] Univ Cape Town, Dept Math & Appl Math, Nonlinear Dynam & Chaos Grp, ZA-7701 Rondebosch, South Africa
[7] Inst Nacl Astrofis Opt & Electr, Calle Luis Enrique Erro 1, Puebla 72840, Mexico
关键词
Autonomous Hamiltonian systems; Complex instability; Periodic orbits; Galactic dynamics; 3-DIMENSIONAL BARS; BARRED GALAXIES; STELLAR-SYSTEMS; ROTATION AXIS; INSTABILITY; DYNAMICS; STABILITY; BIFURCATION; EVOLUTION; MODELS;
D O I
10.1016/j.physd.2021.133050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the evolution of phase space close to complex unstable periodic orbits in two galactic type potentials. They represent characteristic morphological types of disc galaxies, namely barred and normal (non-barred) spiral galaxies. These potentials are known for providing building blocks to support observed features such as the peanut, or X-shaped bulge, in the former case and the spiral arms in the latter. We investigate the possibility that these structures are reinforced, apart by regular orbits, also by orbits in the vicinity of complex unstable periodic orbits. We examine the evolution of the phase space structure in the immediate neighbourhood of the periodic orbits in cases where the stability of a family presents a successive transition from stability to complex instability and then to stability again, as energy increases. We find that we have a gradual reshaping of invariant structures close to the transition points and we trace this evolution in both models. We conclude that for time scales significant for the dynamics of galaxies, there are weakly chaotic orbits associated with complex unstable periodic orbits, which should be considered as structure-supporting, since they reinforce the morphological features we study. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Periodic orbits for a class of galactic potentials
    Felipe Alfaro
    Jaume Llibre
    Ernesto Pérez-Chavela
    [J]. Astrophysics and Space Science, 2013, 344 : 39 - 44
  • [2] Periodic orbits for a class of galactic potentials
    Alfaro, Felipe
    Llibre, Jaume
    Perez-Chavela, Ernesto
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2013, 344 (01) : 39 - 44
  • [3] Periodic orbits in analytical planar galactic potentials
    Scuflaire, R
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1998, 71 (03): : 203 - 228
  • [4] Periodic Orbits in Analytical Planar Galactic Potentials
    Richard Scuflaire
    [J]. Celestial Mechanics and Dynamical Astronomy, 1998, 71 : 203 - 228
  • [5] The cored and logarithm galactic potentials: Periodic orbits and integrability
    Jimenez-Lara, Lidia
    Llibre, Jaume
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
  • [6] Regular orbits and periodic loops in multiply barred galactic potentials
    Maciejewski, W
    Sparke, LS
    [J]. ASTROPHYSICAL JOURNAL, 1997, 484 (02): : L117 - L120
  • [7] Complex periodic orbits and tunneling in chaotic potentials
    Creagh, SC
    Whelan, ND
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (25) : 4975 - 4979
  • [8] CLASSIFICATION OF POINCARE-TYPE UNSTABLE PERIODIC ORBITS
    VIEIRAMARTINS, R
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (22): : 1071 - 1074
  • [9] PARABOLIC-TYPE ORBITS FOR ONE MODEL OF GALACTIC POTENTIALS
    TIMOSHKOVA, EI
    [J]. ASTRONOMICHESKII ZHURNAL, 1991, 68 (06): : 1315 - 1322
  • [10] Periodic orbits in a galactic potential
    Harsoula, First M.
    Contopoulos, Second G.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2024, 136 (03):