Iterative rigid body transformation estimation for visual 3-D object tracking

被引:0
|
作者
Hersch, Micha [1 ]
Reichert, Thomas [1 ]
Billard, Aude [1 ]
机构
[1] Ecole Polytech Fed Lausanne, LASA Lab, CH-1015 Lausanne, Switzerland
关键词
stereo vision tracking; rigid body transformation estimation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel yet simple 3D stereo vision tracking algorithm which computes the position and orientation of an object from the location of markers attached to the object. The novelty of this algorithm is that it does not assume that the markers are tracked synchronously. This provides a higher robustness to the noise in the data, missing points and outliers. The principle of the algorithm is to perform a simple gradient descent on the rigid body transformation describing the object position and orientation. This is proved to converge to the correct solution and is illustrated in a simple experimental setup involving two USB cameras.
引用
收藏
页码:674 / 677
页数:4
相关论文
共 50 条
  • [1] Iterative Estimation of Rigid-Body TransformationsApplication to Robust Object Tracking and Iterative Closest Point
    Micha Hersch
    Aude Billard
    Sven Bergmann
    [J]. Journal of Mathematical Imaging and Vision, 2012, 43 : 1 - 9
  • [2] Iterative Estimation of Rigid-Body Transformations Application to Robust Object Tracking and Iterative Closest Point
    Hersch, Micha
    Billard, Aude
    Bergmann, Sven
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 43 (01) : 1 - 9
  • [3] 3-D Rigid Body Tracking Using Vision and Depth Sensors
    Gedik, O. Serdar
    Alatan, A. Aydin
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (05) : 1395 - 1405
  • [4] Robust Estimation of Similarity Transformation for Visual Object Tracking
    Li, Yang
    Zhu, Jianke
    Hoi, Steven C. H.
    Song, Wenjie
    Wang, Zhefeng
    Liu, Hantang
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 8666 - 8673
  • [5] The 3-D rigid body line displacements and 3-D rigid body angle displacements measurement
    Zhou, J
    Zhao, H
    Chen, WY
    Tian, F
    Tan, YS
    [J]. AUTOMATED OPTICAL INSPECTION FOR INDUSTRY, 1996, 2899 : 667 - 674
  • [6] Tightly-Coupled Visual-Inertial Localization and 3-D Rigid-Body Target Tracking
    Eckenhoff, Kevin
    Yang, Yulin
    Geneva, Patrick
    Huang, Guoquan
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02): : 1541 - 1548
  • [7] Contour-based iterative pose estimation of 3D rigid object
    Leng, D. W.
    Sun, W. D.
    [J]. IET COMPUTER VISION, 2011, 5 (05) : 291 - 300
  • [8] Tracking of 3-D objects with non-rigid deformation estimation in medical images
    Rosas-Romero, R
    Hwang, JN
    Yuan, C
    [J]. CISST'98: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, 1998, : 112 - 118
  • [9] Robust estimation of rigid body 3-D motion parameters from point correspondences
    Papadimitriou, T
    Diamantaras, KI
    Strintzis, MG
    Roumeliotis, M
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 3349 - 3352
  • [10] An image-domain cost function for 3-D rigid body motion estimation
    Steinbach, E
    Girod, B
    [J]. 15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 815 - 818