An Efficient GPU-based de Bruijn Graph Construction Algorithm for Micro-Assembly

被引:4
|
作者
Ren, Shanshan [1 ]
Ahmed, Nauman [1 ]
Bertels, Koen [1 ]
Al-Ars, Zaid [1 ]
机构
[1] Delft Univ Technol, Quantum & Comp Engn Dept, NL-2628 CD Delft, Netherlands
关键词
GPU acceleration; de Bruijn graph construction; micro-assembly; repeat k-mers;
D O I
10.1109/BIBE.2018.00020
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In order to improve the accuracy of indel detection, micro-assembly is used in multiple variant callers, such as the GATK HaplotypeCaller to reassemble reads in a specific region of the genome. Assembly is a computationally intensive process that causes runtime bottlenecks. In this paper, we propose a GPU-based de Bruijn graph construction algorithm for micro-assembly in the GATK HaplotypeCaller to improve its performance. Various synthetic datasets are used to compare the performance of the GPU-based de Bruijn graph construction implementation with the software-only baseline, which achieves a speedup of up to 3x. An experiment using two human genome datasets is used to evaluate the performance shows a speedup of up to 2.66x.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [1] HaVec: An Efficient de Bruijn Graph Construction Algorithm for Genome Assembly
    Limon, Mahfuzer Rahman
    Sharker, Ratul
    Biswas, Sajib
    Rahman, M. Sohel
    [J]. INTERNATIONAL JOURNAL OF GENOMICS, 2017, 2017
  • [2] Parallelized De Bruijn graph construction and simplification for genome assembly
    [J]. Cheng, J.-F. (jiefengcheng@gmail.com), 1600, Chinese Academy of Sciences (24):
  • [3] Parallelizing Big De Bruijn Graph Traversal for Genome Assembly on GPU Clusters
    Qiu, Shuang
    Feng, Zonghao
    Luo, Qiong
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 466 - 470
  • [4] Parallel De Bruijn Graph Construction and Traversal for De Novo Genome Assembly
    Georganas, Evangelos
    Buluc, Aydin
    Chapman, Jarrod
    Oliker, Leonid
    Rokhsar, Daniel
    Yelick, Katherine
    [J]. SC14: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2014, : 437 - 448
  • [5] Efficient GPU-based Graph Cuts for Stereo Matching
    Choi, Young-kyu
    Park, In Kyu
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 642 - 648
  • [6] gSampler: General and Efficient GPU-based Graph Sampling for Graph Learning
    Gong, Ping
    Liu, Renjie
    Mao, Zunyao
    Cai, Zhenkun
    Yan, Xiao
    Li, Cheng
    Wang, Minjie
    Li, Zhuozhao
    [J]. PROCEEDINGS OF THE TWENTY-NINTH ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES, SOSP 2023, 2023, : 562 - 578
  • [7] EGraph: Efficient Concurrent GPU-Based Dynamic Graph Processing
    Zhang, Yu
    Liang, Yuxuan
    Zhao, Jin
    Mao, Fubing
    Gu, Lin
    Liao, Xiaofei
    Jin, Hai
    Liu, Haikun
    Guo, Song
    Zeng, Yangqing
    Hu, Hang
    Li, Chen
    Zhang, Ji
    Wang, Biao
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5823 - 5836
  • [8] Efficient de Bruijn Graph Construction For Genome Assembly Using a Hash Table and Auxiliary Vector Data Structures
    Limon, Mahfuzer Rahman
    Sharker, Ratul
    Biswas, Sajib
    Rahman, M. Sohel
    [J]. 2014 17TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2014, : 121 - 126
  • [9] Antibody sequences assembly method based on weighted de Bruijn graph
    Lu, Yi
    Ge, Cheng
    Cai, Biao
    Xu, Qing
    Kong, Ren
    Chang, Shan
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (04) : 6174 - 6190
  • [10] Graph analysis using a GPU-based parallel algorithm: quantum clustering
    Wang, Zhe
    He, Zhijie
    Liu, Ding
    [J]. APPLIED INTELLIGENCE, 2024, : 7765 - 7776