Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation

被引:155
|
作者
Zhang, Liuyang [1 ]
Wang, Zhiyu [1 ]
Qiu, Jieshan [1 ]
机构
[1] Dalian Univ Technol, PSU DUT Joint Ctr Energy Res, Liaoning Key Lab Energy Mat & Chem Engn, State Key Lab Fine Chem, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalysis; hydrogen production; seawater splitting; sulfion oxidation; METAL-ORGANIC FRAMEWORKS; EVOLUTION; WATER;
D O I
10.1002/adma.202109321
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrolysis of costless and infinite seawater is a promising way toward grid-scale hydrogen production without causing freshwater stress. Practical potential of this technology, however, is hindered by low energy efficiency and anode corrosion by the detrimental chlorine chemistry in seawater in addition to unaffordable electricity expense. Herein, energy-saving hydrogen production is reported by chlorine-free seawater splitting coupling sulfion oxidation. It yields hydrogen at a low cell voltage of 0.97 V, cutting the electricity consumption to 2.32 kWh per m(3) H-2 at 300 mA cm(-2). Compared to alkaline water electrolysis, the energy expense is primarily saved by 60% with 50% lower energy equivalent input. Benefiting from the ultralow cell voltage, the hazardous chlorine chemistry is fully avoided without anode corrosion regardless of Cl- crossover. Meanwhile, it also allows fast degradation of S2- pollutant from the water body to value-added sulfur with 80% efficiency, for further reducing hydrogen cost and protection of the ecosystem. Connecting such a hybrid seawater electrolyzer to a commercial solar cell can harvest the hydrogen from seawater with better sustainability. This work may offer new opportunities for low-cost hydrogen production from the unlimited ocean resources with environmental protection.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Energy-saving seawater electrolysis for hydrogen production
    Zenta Kato
    Koichi Izumiya
    Naokazu Kumagai
    Koji Hashimoto
    [J]. Journal of Solid State Electrochemistry, 2009, 13 : 219 - 224
  • [2] Energy-saving seawater electrolysis for hydrogen production
    Kato, Zenta
    Izumiya, Koichi
    Kumagai, Naokazu
    Hashimoto, Koji
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (02) : 219 - 224
  • [3] Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation
    Li, Tongtong
    Wang, Boran
    Cao, Yu
    Liu, Zhexuan
    Wang, Shaogang
    Zhang, Qi
    Sun, Jie
    Zhou, Guangmin
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Coupling Hydrazine Oxidation with Seawater Electrolysis for Energy-Saving Hydrogen Production over Bifunctional CoNC Nanoarray Electrocatalysts
    Xin, Yu
    Shen, Kui
    Guo, Tongtian
    Chen, Liyu
    Li, Yingwei
    [J]. SMALL, 2023, 19 (21)
  • [5] Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation
    Fu Sun
    Jingshan Qin
    Zhiyu Wang
    Mengzhou Yu
    Xianhong Wu
    Xiaoming Sun
    Jieshan Qiu
    [J]. Nature Communications, 12
  • [6] Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation
    Sun, Fu
    Qin, Jingshan
    Wang, Zhiyu
    Yu, Mengzhou
    Wu, Xianhong
    Sun, Xiaoming
    Qiu, Jieshan
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] Recent advances in hybrid water electrolysis for energy-saving hydrogen production
    Di Li
    Jibing Tu
    Yingying Lu
    Bing Zhang
    [J]. Green Chemical Engineering, 2023, 4 (01) : 17 - 29
  • [8] Recent advances in hybrid water electrolysis for energy-saving hydrogen production
    Li, Di
    Tu, Jibing
    Lu, Yingying
    Zhang, Bing
    [J]. GREEN CHEMICAL ENGINEERING, 2023, 4 (01) : 17 - 29
  • [9] Aerophobic/Hydrophilic Nickel-Iron Sulfide Nanoarrays for Energy-Saving Hydrogen Production from Seawater Splitting Assisted by Sulfion Oxidation Reaction
    Zhang, Jiayi
    Zeng, Yu
    Xiao, Tanyang
    Tian, Song
    Jiang, Jing
    [J]. INORGANIC CHEMISTRY, 2024, 63 (38) : 17662 - 17671
  • [10] Long-Lasting Hybrid Seawater Electrolysis Enabled by Anodic Mass Transport Intensification for Energy-Saving Hydrogen Production
    He, Dongtong
    Yang, Pengju
    Yang, Kaizhou
    Qiu, Jieshan
    Wang, Zhiyu
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024,