Synthesis of Ge1-xSnx alloys by ion implantation and pulsed laser melting: Towards a group IV direct bandgap material

被引:25
|
作者
Tran, Tuan T. [1 ]
Pastor, David [2 ]
Gandhi, Hemi H. [2 ]
Smillie, Lachlan A. [1 ]
Akey, Austin J. [3 ]
Aziz, Michael J. [2 ]
Williams, J. S. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, GPO Box 4, Canberra, ACT 0200, Australia
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] MIT, Sch Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
GE; SI; GROWTH; DEPENDENCE; ABSORPTION; SILICON; LAYERS;
D O I
10.1063/1.4948960
中图分类号
O59 [应用物理学];
学科分类号
摘要
The germanium-tin (Ge1-xSnx) material system is expected to be a direct bandgap group IV semiconductor at a Sn content of 6: 5 - 11 at: %. Such Sn concentrations can be realized by nonequilibrium deposition techniques such as molecular beam epitaxy or chemical vapour deposition. In this report, the combination of ion implantation and pulsed laser melting is demonstrated to be an alternative promising method to produce a highly Sn concentrated alloy with a good crystal quality. The structural properties of the alloys such as soluble Sn concentration, strain distribution, and crystal quality have been characterized by Rutherford backscattering spectrometry, Raman spectroscopy, x ray diffraction, and transmission electron microscopy. It is shown that it is possible to produce a high quality alloy with up to 6: 2 at:% Sn. The optical properties and electronic band structure have been studied by spectroscopic ellipsometry. The introduction of substitutional Sn into Ge is shown to either induce a splitting between light and heavy hole subbands or lower the conduction band at the C valley. Limitations and possible solutions to introducing higher Sn content into Ge that is sufficient for a direct bandgap transition are also discussed. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ge1-xSnx alloys synthesized by ion implantation and pulsed laser melting
    Gao, Kun
    Prucnal, S.
    Huebner, R.
    Baehtz, C.
    Skorupa, I.
    Wang, Yutian
    Skorupa, W.
    Helm, M.
    Zhou, Shengqiang
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (04)
  • [2] Synthesis of Ge-Sn Alloys by Ion Implantation and Pulsed Laser Melting: Towards a Group IV Direct Band Gap Semiconductor
    Williams, J. S.
    Tran, T. T.
    [J]. 2017 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2017, : 1 - 2
  • [3] Optical Transitions in Direct-Bandgap Ge1-xSnx Alloys
    Stange, D.
    Wirths, S.
    den Driesch, N. von
    Mussler, G.
    Stoica, T.
    Ikonic, Z.
    Hartmann, J. M.
    Mantl, S.
    Gruetzmacher, D.
    Buca, D.
    [J]. ACS PHOTONICS, 2015, 2 (11): : 1539 - 1545
  • [4] Growth of Direct Bandgap Ge1-xSnx Alloys by Modified Magnetron Sputtering
    Qian, Li
    Tong, Jinchao
    Fan, Weijun
    Pan, Ji Sheng
    Zhang, Dao Hua
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2020, 56 (01)
  • [5] Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx nanowires
    Biswas, Subhajit
    Doherty, Jessica
    Saladukha, Dzianis
    Ramasse, Quentin
    Majumdar, Dipanwita
    Upmanyu, Moneesh
    Singha, Achintya
    Ochalski, Tomasz
    Morris, Michael A.
    Holmes, Justin D.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [6] The growth of Ge and direct bandgap Ge1-xSnx on GaAs (001) by molecular beam epitaxy
    Gunder, Calbi
    de Oliveira, Fernando Maia
    Wangila, Emmanuel
    Stanchu, Hryhorii
    Zamani-Alavijeh, Mohammad
    Ojo, Solomon
    Acharya, Sudip
    Said, Abdulla
    Li, Chen
    Mazur, Yuriy I.
    Yu, Shui-Qing
    Salamo, Gregory J.
    [J]. RSC ADVANCES, 2024, 14 (02) : 1250 - 1257
  • [7] Atomistic analysis of band-to-band tunnelling in direct-gap Ge1-xSnx group-IV alloys
    Dunne, Michael D.
    Broderick, Christopher A.
    Luisier, Mathieu
    O'Reilly, Eoin P.
    [J]. 2020 INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2020, : 7 - 8
  • [8] Synthesis of Ge1−xSnx Alloy Thin Films Using Ion Implantation and Pulsed Laser Melting (II-PLM)
    A. Bhatia
    W.M. Hlaing Oo
    G. Siegel
    P.R. Stone
    K.M. Yu
    M.A. Scarpulla
    [J]. Journal of Electronic Materials, 2012, 41 : 837 - 844
  • [9] Synthesis of highly mismatched alloys using ion implantation and pulsed laser melting
    Yu, K. M.
    Scarpulla, M. A.
    Farshchi, R.
    Dubon, O. D.
    Walukiewicz, W.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 261 (1-2): : 1150 - 1154
  • [10] Nanocrystalline Group IV Alloy Semiconductors: Synthesis and Characterization of Ge1-xSnx Quantum Dots for Tunable Bandgaps
    Esteves, Richard J. Alan
    Ho, Minh Q.
    Arachchige, Indika U.
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (05) : 1559 - 1568