Mechanism for breakaway oxidation of the Ti2AlC MAX phase

被引:29
|
作者
Badie, Sylvain [1 ,2 ]
Sebold, Doris [1 ]
Vassen, Robert [1 ]
Guillon, Olivier [1 ,2 ,3 ]
Gonzalez-Julian, Jesus [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res Mat Synth & Proc IEK 1, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Mineral Engn, Dept Ceram & Refractory Mat, D-52064 Aachen, Germany
[3] Julich Aachen Res Alliance, JARA Energy, Julich, Germany
关键词
Ti2AlC; MAX phases; Oxidation; Oxide rumpling; Oxide blistering; Breakaway oxidation; Rutile TiO2; Mixed oxide layer; HIGH-TEMPERATURE OXIDATION; ENVIRONMENTAL RESISTANCE; TIN+1ALXN N=1-3; TI3ALC2; BEHAVIOR; ALLOYS; CR2ALC; VAPOR; WATER; OXIDE;
D O I
10.1016/j.actamat.2021.117025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The good oxidation resistance of MAX phases up to temperatures around 1200 degrees C can be compromised for long exposure due to the breakaway of the protective alumina layer. Herein, we unveil a mechanism of breakaway oxidation of the Ti2AlC MAX phase, identifying the main trigger and the solutions to avoid it. It is caused by excessive rumpling of the oxide scale on surfaces with arithmetical mean roughness (R-a) > 3 mu m and constitutes a key factor in subsequent consumption of Ti2AlC. First, the oxide scale experienced rumpling due to significant radial stresses generated at the Ti2AlC/oxide interface. Second, scale blistering resulted from substantial buckling due to the evolution of in-plane stresses and lateral lengthening. Third, blister collapse and exposure of the underlying Al-depleted Ti2AlC surface led to rapid ingress of oxygen and oxide/substrate interface recession. The self-healing ability of Ti2AlC has been restrained and breakaway oxidation kinetics following a linear trend have been initiated. Similarly, breakaway oxidation was observed on micro-damaged surfaces. A mixed oxide layer with high porosity mainly composed of rutile titanium dioxide (TiO2) promptly formed on these surfaces, gradually consuming the base Ti2AlC material. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Kinetic Aspects of Ti2AlC MAX Phase Oxidation
    J. L. Smialek
    Oxidation of Metals, 2015, 83 : 351 - 366
  • [2] Kinetic Aspects of Ti2AlC MAX Phase Oxidation
    Smialek, J. L.
    OXIDATION OF METALS, 2015, 83 (3-4): : 351 - 366
  • [3] Studying the oxidation of Ti2AlC MAX phase in atmosphere: A review
    Haftani, Mohammad
    Heydari, Mina Saeedi
    Baharvandi, Hamid Reza
    Ehsani, Naser
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2016, 61 : 51 - 60
  • [4] Mechanical and oxidation behavior of textured Ti2AlC and Ti3AlC2 MAX phase materials
    Li, Xiaoqiang
    Xie, Xi
    Gonzalez-Julian, Jesus
    Malzbender, Juergen
    Yang, Rui
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (15) : 5258 - 5271
  • [5] Oxidative durability of TBCs on Ti2AlC MAX phase substrates
    Smialek, James L.
    Harder, Bryan J.
    Garg, Anita
    SURFACE & COATINGS TECHNOLOGY, 2016, 285 : 77 - 86
  • [6] Cold Spraying of Ti2AlC MAX-Phase Coatings
    H. Gutzmann
    F. Gärtner
    D. Höche
    C. Blawert
    T. Klassen
    Journal of Thermal Spray Technology, 2013, 22 : 406 - 412
  • [7] Deformation Microstructure Developed by Nanoindentation of a MAX Phase Ti2AlC
    Wada, Yusuke
    Sekido, Nobuaki
    Ohmura, Takahito
    Yoshimi, Kyosuke
    MATERIALS TRANSACTIONS, 2018, 59 (05) : 771 - 778
  • [8] Cold Spraying of Ti2AlC MAX-Phase Coatings
    Gutzmann, H.
    Gaertner, F.
    Hoeche, D.
    Blawert, C.
    Klassen, T.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2013, 22 (2-3) : 406 - 412
  • [9] Experimental evidence of zonal dislocations in the Ti2AlC MAX phase
    Mussi, Alexandre
    Henzelmeier, Adrien
    Weidner, Timmo
    Novelli, Marc
    Wenbo, Yu
    Cuvilly, Fabien
    Grosdidier, Thierry
    Guitton, Antoine
    MATERIALS CHARACTERIZATION, 2023, 200
  • [10] Oxidation and hot corrosion behaviors of MAX-phase Ti3SiC2, Ti2AlC, Cr2AlC
    Li, Xiaojing
    Wang, Shunhua
    Wu, Guixuan
    Zhou, Dapeng
    Pu, Jibin
    Yu, Miao
    Wang, Qiong
    Sun, Qinshuo
    CERAMICS INTERNATIONAL, 2022, 48 (18) : 26618 - 26628