Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect

被引:528
|
作者
Majdoub, M. S. [1 ]
Sharma, P. [1 ,2 ]
Cagin, T. [3 ]
机构
[1] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
[2] Univ Houston, Dept Phys, Houston, TX 77204 USA
[3] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77845 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.77.125424
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Crystalline piezoelectric dielectrics electrically polarize upon application of uniform mechanical strain. Inhomogeneous strain, however, locally breaks inversion symmetry and can potentially polarize even nonpiezoelectric (centrosymmetric) dielectrics. Flexoelectricity-the coupling of strain gradient to polarization-is expected to show a strong size dependency due to the scaling of strain gradients with structural feature size. In this study, using a combination of atomistic and theoretical approaches, we investigate the "effective" size-dependent piezoelectric and elastic behavior of inhomogeneously strained nonpiezoelectric and piezoelectric nanostructures. In particular, to obtain analytical results and tease out physical insights, we analyze a paradigmatic nanoscale cantilever beam. We find that in materials that are intrinsically piezoelectric, the flexoelectricity and piezoelectricity effects do not add linearly and exhibit a nonlinear interaction. The latter leads to a strong size-dependent enhancement of the apparent piezoelectric coefficient resulting in, for example, a "giant" 500% enhancement over bulk properties in BaTiO3 for a beam thickness of 5 nm. Correspondingly, for nonpiezoelectric materials also, the enhancement is nontrivial (e. g., 80% for 5 nm size in paraelectric BaTiO3 phase). Flexoelectricity also modifies the apparent elastic modulus of nanostructures, exhibiting an asymptotic scaling of 1/h(2), where h is the characteristic feature size. Our major predictions are verified by quantum mechanically derived force-field-based molecular dynamics for two phases (cubic and tetragonal) of BaTiO3.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect (vol 77, 125424, 2008)
    Majdoub, M. S.
    Sharma, P.
    Cagin, T.
    [J]. PHYSICAL REVIEW B, 2009, 79 (11):
  • [2] A review of size-dependent elasticity for nanostructures
    Hosseini, Mohammad
    Hadi, Amin
    Malekshahi, Ahmad
    Shishesaz, Mohammad
    [J]. JOURNAL OF COMPUTATIONAL APPLIED MECHANICS, 2018, 49 (01): : 197 - 211
  • [3] SIZE-DEPENDENT PIEZOELECTRICITY AND ELASTICITY DUE TO THE ELECTRIC FIELD-STRAIN GRADIENT COUPLING AND STRAIN GRADIENT ELASTICITY
    Xu, Liang
    Shen Shengping
    [J]. INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2013, 5 (02)
  • [4] Size-dependent piezoelectricity
    Hadjesfandiari, Ali R.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (18) : 2781 - 2791
  • [5] A semi-analytical method for quantifying the size-dependent elasticity of nanostructures
    Dingreville, Remi
    Kulkarni, Ambarish J.
    Zhou, Min
    Qu, Jianmin
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (02)
  • [6] On the vibration of size-dependent rotating flexoelectric microbeams
    S. M. H. Hosseini
    Yaghoub Tadi Beni
    [J]. Applied Physics A, 2024, 130
  • [7] Analysis of size-dependent smart flexoelectric nanobeams
    Rahim Omidian
    Yaghoub Tadi Beni
    Fahimeh Mehralian
    [J]. The European Physical Journal Plus, 132
  • [8] Analysis of size-dependent smart flexoelectric nanobeams
    Omidian, Rahim
    Beni, Yaghoub Tadi
    Mehralian, Fahimeh
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (11):
  • [9] On the vibration of size-dependent rotating flexoelectric microbeams
    Hosseini, S. M. H.
    Beni, Yaghoub Tadi
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (01):
  • [10] Flexoelectric charge separation and size dependent piezoelectricity in dielectric solids
    Ma, Wenhui
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (01): : 213 - 218