Improving LAI spatio-temporal continuity using a combination of MODIS and MERSI data

被引:10
|
作者
Yin, Gaofei [1 ]
Li, Jing [2 ,3 ]
Liu, Qinhuo [2 ,3 ]
Zhong, Bo [2 ]
Li, Ainong [1 ]
机构
[1] Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu, Peoples R China
[2] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[3] JCGCS, Beijing, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
LEAF-AREA INDEX; ESSENTIAL CLIMATE VARIABLES; TIME-SERIES; GLOBAL PRODUCTS; GEOV1; LAI; DATA SETS; VEGETATION; RETRIEVAL; ALGORITHM; FAPAR;
D O I
10.1080/2150704X.2016.1182657
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Spatio-temporally continuous leaf area index (LAI) is required for surface process simulation, climate modelling and global change study. As a result of cloud contamination and other factors, the current LAI products are spatially and temporally discontinuous. A multi-sensor integration method was proposed in this paper to combine Terra-Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua-MODIS, FY (FengYun) 3A-MEdium Resolution Spectrum Imager (MERSI) and FY3B-MERSI data to improve LAI spatio-temporal continuity. It consists of a normalization algorithm to eliminate the difference between MODIS and MERSI data in spatial and spectral aspects, a daily LAI retrieval algorithm based on neural networks and a maximum value compositing algorithm. The feasibility of our LAI retrieval method to improve continuity was assessed at national scale (in China). Results show that (1) the combination of multi-sensor data can significantly improve LAI temporal continuity, especially for mountainous regions which are characterized by high frequency of cloud coverage; (2) the improvement in spatial continuity is obvious as can be seen from the increase of retrieval ratio, defined as the ratio of the number of retrieved pixels to the total number of pixels, from 0.78 for GEOV1 LAI product, and 0.88 for MOD15A2 LAI product to 0.98 for multi-sensor LAI product.
引用
收藏
页码:771 / 780
页数:10
相关论文
共 50 条
  • [1] Spatio-Temporal LAI Modelling by Integrating Climate and MODIS LAI Data in a Mesoscale Catchment
    Sun, Liya
    Schulz, Karsten
    [J]. REMOTE SENSING, 2017, 9 (02)
  • [2] Using MODIS LAI Data to Monitor Spatio-Temporal Changes of Winter Wheat Phenology in Response to Climate Warming
    Song, Yang
    Wang, Jing
    Yu, Qiang
    Huang, Jianxi
    [J]. REMOTE SENSING, 2020, 12 (05)
  • [3] Spatio-temporal combination of MODIS images -: potential for snow cover mapping
    Parajka, J.
    Bloeschl, G.
    [J]. WATER RESOURCES RESEARCH, 2008, 44 (03)
  • [4] Validation of MODIS Data for localized spatio-temporal evapotranspiration mapping
    Nadzri, M. I.
    Hashim, M.
    [J]. 8TH INTERNATIONAL SYMPOSIUM OF THE DIGITAL EARTH (ISDE8), 2014, 18
  • [5] Validation of MODIS Data for Localized Spatio-Temporal Evapotranspiration Mapping
    Nadzri, M. I.
    Hashim, M.
    [J]. 8TH INTERNATIONAL SYMPOSIUM OF THE DIGITAL EARTH (ISDE8), 2014, 18
  • [6] Enhancing Spatio-Temporal Fusion of MODIS and Landsat Data by Incorporating 250 m MODIS Data
    Wang, Qunming
    Zhang, Yihang
    Onojeghuo, Alex O.
    Zhu, Xiaolin
    Atkinson, Peter M.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (09) : 4116 - 4123
  • [7] Spatio-Temporal Characterization of Fire Using MODIS Data (2000-2020) in Colombia
    Bolano-Diaz, Sindy
    Camargo-Caicedo, Yiniva
    Soro, Tionhonkele D.
    N'Dri, Aya Brigitte
    Bolano-Ortiz, Tomas R.
    [J]. FIRE-SWITZERLAND, 2022, 5 (05):
  • [8] Spatio-temporal patterns of Secchi depth in the waters around the Korean Peninsula using MODIS data
    Kim, Sun-Hwa
    Yang, Chan-Su
    Ouchi, Kazuo
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 2015, 164 : 172 - 182
  • [9] Spatio-temporal variability of fire occurrence and recurrence in the Caatinga Biome using MODIS sensor data
    da Silva, Amanda Cavalcante
    Juvanhol, Ronie Silva
    Miranda, Jonathan da Rocha
    [J]. CIENCIA FLORESTAL, 2023, 33 (01):
  • [10] A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI)
    Houborg, Rasmus
    McCabe, Matthew F.
    Gao, Feng
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 47 : 15 - 29