Toward feasible machine learning model updates in network-based intrusion detection

被引:16
|
作者
Horchulhack, Pedro [1 ]
Viegas, Eduardo K. [1 ,2 ]
Santin, Altair O. [1 ]
机构
[1] Pontificia Univ Catolica Parana, Grad Program Comp Sci, Curitiba, Parana, Brazil
[2] Technol Innovat Inst, Secure Syst Res Ctr, Abu Dhabi 9639, U Arab Emirates
关键词
Intrusion detection; Stream learning; Reject option; REJECT OPTION; REAL-TIME; ENSEMBLE; SVM;
D O I
10.1016/j.comnet.2021.108618
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Over the last years, several works have proposed highly accurate machine learning (ML) techniques for network-based intrusion detection systems (NIDS), that are hardly used in production environments. In practice, current intrusion detection schemes cannot easily handle network traffic's changing behavior over time, requiring frequent and complex model updates to be periodically performed. As a result, unfeasible amounts of labeled training data must be provided for model updates as time passes, making such proposals unfeasible for the real world. This paper proposes a new intrusion detection model based on stream learning with delayed model updates to make the model update task feasible with a twofold implementation. First, our model maintains the intrusion detection accuracy through a classification assessment approach, even with outdated underlying ML models. The classification with a reject option rationale also allows suppressing potential misclassifications caused by new network traffic behavior. Second, the rejected instances are stored for long periods and used for incremental model updates. As an insight, old rejected instances can be easily labeled through publicly available attack repositories without human assistance. Experiments conducted in a novel dataset containing a year of real network traffic with over 2.6 TB of data have shown that current techniques for intrusion detection cannot cope with the network traffic's evolving behavior, significantly degrading their accuracy over time if no model updates are performed. In contrast, the proposed model can maintain its classification accuracy for long periods without model updates, even improving the false-positive rates by up to 12% while rejecting only 8% of the instances. If periodic model updates are conducted, our proposal can improve the detection accuracy by up to 6% while rejecting only 2% of network events. In addition, the proposed model can perform model updates without human assistance, waiting up to 3 months for the proper event label to be provided without impact on accuracy, while demanding only 3.2% of the computational time and 2% of new instances to be labeled as time passes, making model updates in NIDS a feasible task.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Federated learning for reliable model updates in network-based intrusion detection
    dos Santos, Roger R.
    Viegas, Eduardo K.
    Santin, Altair O.
    Tedeschi, Pietro
    COMPUTERS & SECURITY, 2023, 133
  • [2] Toward a Reliable Evaluation of Machine Learning Schemes for Network-Based Intrusion Detection
    Viegas E.K.
    Santin A.O.
    Tedeschi P.
    IEEE Internet of Things Magazine, 2023, 6 (02): : 70 - 75
  • [3] Machine Learning Techniques for Network-based Intrusion Detection System: A Survey Paper
    Ahmed, Lubna Ali Hassan
    Hamad, Yahia Abdalla Mohamed
    2021 IEEE NATIONAL COMPUTING COLLEGES CONFERENCE (NCCC 2021), 2021, : 1024 - +
  • [4] Machine Learning Based Network Intrusion Detection
    Lee, Chie-Hong
    Su, Yann-Yean
    Lin, Yu-Chun
    Lee, Shie-Jue
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), 2017, : 79 - 83
  • [5] Evaluation of Machine Learning Algorithms in Network-Based Intrusion Detection Using Progressive Dataset
    Chua, Tuan-Hong
    Salam, Iftekhar
    SYMMETRY-BASEL, 2023, 15 (06):
  • [6] Machine Learning Classification Model For Network Based Intrusion Detection System
    Kumar, Sanjay
    Viinikainen, Ari
    Hamalainen, Timo
    2016 11TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2016, : 242 - 249
  • [7] A Neural Network-Based Learning Algorithm for Intrusion Detection Systems
    Ahmed, Hassan I.
    Elfeshawy, Nawal A.
    Elzoghdy, S. F.
    El-sayed, Hala S.
    Faragallah, Osama S.
    WIRELESS PERSONAL COMMUNICATIONS, 2017, 97 (02) : 3097 - 3112
  • [8] A Neural Network-Based Learning Algorithm for Intrusion Detection Systems
    Hassan I. Ahmed
    Nawal A. Elfeshawy
    S. F. Elzoghdy
    Hala S. El-sayed
    Osama S. Faragallah
    Wireless Personal Communications, 2017, 97 : 3097 - 3112
  • [9] A dependable hybrid machine learning model for network intrusion detection
    Talukder, Md. Alamin
    Hasan, Khondokar Fida
    Islam, Md. Manowarul
    Uddin, Md. Ashraf
    Akhter, Arnisha
    Abu Yousuf, Mohammand
    Alharbi, Fares
    Moni, Mohammad Ali
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 72
  • [10] Data Processing and Model Selection for Machine Learning-based Network Intrusion Detection
    Sahu, Abhijeet
    Mao, Zeyu
    Davis, Katherine
    Goulart, Ana E.
    2020 IEEE INTERNATIONAL WORKSHOP TECHNICAL COMMITTEE ON COMMUNICATIONS QUALITY AND RELIABILITY (CQR), 2020, : 49 - 54