Semidefinite descriptions of low-dimensional separable matrix cones

被引:6
|
作者
Hildebrand, Roland [1 ]
机构
[1] Univ Grenoble 1, CNRS, LJK, F-38041 Grenoble 9, France
关键词
positive partial transpose; separability;
D O I
10.1016/j.laa.2008.04.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K ⊂ E, K′ ⊂ E′ be convex cones residing in finite-dimensional real vector spaces. An element y in the tensor product E ⊗ E′ is K ⊗ K′-separable if it can be represented as finite sum y = ∑l xl ⊗ xl′, where xl ∈ K and xl′ ∈ K′ for all l. Let S (n), H (n), Q (n) be the spaces of n × n real symmetric, complex Hermitian and quaternionic Hermitian matrices, respectively. Let further S+ (n), H+ (n), Q+ (n) be the cones of positive semidefinite matrices in these spaces. If a matrix A ∈ H (mn) = H (m) ⊗ H (n) is H+ (m) ⊗ H+ (n)-separable, then it fulfills also the so-called PPT condition, i.e. it is positive semidefinite and has a positive semidefinite partial transpose. The same implication holds for matrices in the spaces S (m) ⊗ S (n), H (m) ⊗ S (n), and for m ≤ 2 in the space Q (m) ⊗ S (n). We provide a complete enumeration of all pairs (n, m) when the inverse implication is also true for each of the above spaces, i.e. the PPT condition is sufficient for separability. We also show that a matrix in Q (n) ⊗ S (2) is Q+ (n) ⊗ S+ (2)- separable if and only if it is positive semidefinite. © 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:901 / 932
页数:32
相关论文
共 50 条
  • [1] A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem
    Ding, Yichuan
    Wolkowicz, Henry
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2009, 34 (04) : 1008 - 1022
  • [2] Discovering Low-Dimensional Descriptions of Multineuronal Dependencies
    Mitskopoulos, Lazaros
    Onken, Arno
    [J]. ENTROPY, 2023, 25 (07)
  • [3] Semidefinite descriptions of cones defining spectral mask constraints
    Faybusovich, L
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 169 (03) : 1207 - 1221
  • [4] Equilibration in low-dimensional quantum matrix models
    Huebener, R.
    Sekino, Y.
    Eisert, J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (04):
  • [5] Equilibration in low-dimensional quantum matrix models
    R. Hübener
    Y. Sekino
    J. Eisert
    [J]. Journal of High Energy Physics, 2015
  • [6] Learning low-dimensional separable decompositions of MIMO non-linear systems
    Wachel, P.
    Tiels, K.
    Filinski, M.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (04) : 899 - 905
  • [7] Thermodynamic superheating of low-dimensional metals embedded in matrix
    Jiang, Q
    Liang, LH
    Li, JC
    [J]. VACUUM, 2003, 72 (03) : 249 - 255
  • [8] Low-dimensional topology, low-dimensional field theory and representation theory
    Fuchs, Juergen
    Schweigert, Christoph
    [J]. REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 255 - 267
  • [9] Stable recovery of low-dimensional cones in Hilbert spaces: One RIP to rule them all
    Traonmilin, Yann
    Gribonval, Remi
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, 45 (01) : 170 - 205
  • [10] Low-dimensional perovskites
    Bubnova, Olga
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (07) : 531 - 531