Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells

被引:14
|
作者
Anderson, Tom H. [1 ]
Civiletti, Benjamin J. [1 ]
Monk, Peter B. [1 ]
Lakhtakia, Akhlesh [2 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Solar cell; Coupled optoelectronic simulation; Drift-diffusion model; Hybridizable discontinuous Galerkin method; Rigorous coupled-wave approach; FINITE-ELEMENT-METHOD; DIFFERENTIAL EVOLUTION; WAVE ANALYSIS; CONVERGENCE; ENHANCEMENT; PERFORMANCE; MULTISCALE; EFFICIENCY; GRATINGS; GALERKIN;
D O I
10.1016/j.jcp.2020.109242
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A design tool was formulated for optimizing the efficiency of inorganic, thin-film, photovoltaic solar cells. The solar cell can have multiple semiconductor layers in addition to antireflection coatings, passivation layers, and buffer layers. The solar cell is backed by a metallic grating which is periodic along a fixed direction. The rigorous coupled-wave approach is used to calculate the electron-hole-pair generation rate. The hybridizable discontinuous Galerkin method is used to solve the drift-diffusion equations that govern charge-carrier transport in the semiconductor layers. The chief output is the solar-cell efficiency which is maximized using the differential evolution algorithm to determine the optimal dimensions and bandgaps of the semiconductor layers. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells (vol 407, 109242, 2020)
    Anderson, Tom H.
    Civiletti, Benjamin J.
    Monk, Peter B.
    Lakhtakia, Akhlesh
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 418
  • [2] Numerical Simulation of Thin-Film Photovoltaic Solar Cells
    Sayed, Khairy
    Abdel-Salam, Mazen
    Ahmed, Mahmoud
    Ahmed, Adel A.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B, 2012, : 1127 - 1134
  • [3] Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells
    Ahmad, Faiz
    Lakhtakia, Akhlesh
    Monk, Peter B.
    APPLIED OPTICS, 2020, 59 (04) : 1018 - 1027
  • [4] SIMULATION AND OPTIMIZATION OF THIN-FILM SOLAR CELLS WITH GeSeAS ABSORPTION LAYER
    Han Y.
    Wu H.
    Wang D.
    Xing M.
    Li Z.
    Wang R.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (09): : 66 - 71
  • [5] Photovoltaic technology: The case for thin-film solar cells
    Shah, A
    Torres, P
    Tscharner, R
    Wyrsch, N
    Keppner, H
    SCIENCE, 1999, 285 (5428) : 692 - 698
  • [6] Advanced solar materials for thin-film photovoltaic cells
    Huang, Fu-qiang
    Yang, Chong-yin
    Wan, Dong-yun
    FRONTIERS OF PHYSICS, 2011, 6 (02) : 177 - 196
  • [7] Advanced solar materials for thin-film photovoltaic cells
    Fu-qiang Huang
    Chong-yin Yang
    Dong-yun Wan
    Frontiers of Physics, 2011, 6 : 177 - 196
  • [8] Coupled spectral-hybridizable-discontinuous-Galerkin modeling of thin-film photovoltaic solar cells
    Anderson, Tom H.
    Civiletti, Benjamin J.
    Monk, Peter B.
    Lakhtakia, Akhlesh
    NEW CONCEPTS IN SOLAR AND THERMAL RADIATION CONVERSION AND RELIABILITY, 2018, 10759
  • [9] THIN-FILM PHOTOVOLTAIC CELLS
    ZWEIBEL, K
    AMERICAN SCIENTIST, 1993, 81 (04) : 362 - 369
  • [10] Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells
    Deceglie, Michael G.
    Ferry, Vivian E.
    Alivisatos, A. Paul
    Atwater, Harry A.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (02): : 599 - 604