Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys

被引:111
|
作者
Dai, Dongbo [1 ]
Xu, Tao [1 ]
Wei, Xiao [1 ,2 ]
Ding, Guangtai [1 ,2 ]
Xu, Yan [3 ]
Zhang, Jincang [2 ]
Zhang, Huiran [1 ,2 ,3 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[3] Shanghai Univ Elect Power, Coll Math & Phys, Shanghai 200090, Peoples R China
关键词
High-entropy alloy; Phase transformations; Machine learning; Feature engineering; SOLID-SOLUTION PHASE; PREDICTION; SELECTION; CLASSIFICATION; STABILITY; DESIGN;
D O I
10.1016/j.commatsci.2020.109618
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The prediction of the phase formation of high entropy alloys (HEAs) has attracted great research interest recent years due to their superior structure and mechanical properties of single phase. However, the identification of these single phase solid solution alloys is still a challenge. Previous studies mainly focus on trial-and-error experiments or thermodynamic criteria, the previous is time consuming while the latter depends on the descriptors quality, both provide unreliable prediction. In this study, we attempted to predict the phase formation based on feature engineering and machine learning (ML) with a small dataset. The descriptor dimensionality is augmented from original small dimension to high dimension by non-linear combinations to characterize HEAs. The results showed that this method could achieve higher accuracy in predicting the phase formation of HEAs than traditional methods. Except the prediction of HEAs, this method also can be applied to other materials with limited dataset.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Machine learning-based phase prediction in high-entropy alloys: further optimization of feature engineering
    Guiyang Liu
    Qingqing Wu
    Yong Ma
    Jin Huang
    Quan Xie
    Qingquan Xiao
    Tinghong Gao
    Journal of Materials Science, 2025, 60 (8) : 3999 - 4019
  • [2] Machine learning strategies for high-entropy alloys
    Rickman, J. M.
    Balasubramanian, G.
    Marvel, C. J.
    Chan, H. M.
    Burton, M. -T.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (22)
  • [3] Yield strength prediction of high-entropy alloys using machine learning
    Bhandari, Uttam
    Rafi, Md Rumman
    Zhang, Congyan
    Yang, Shizhong
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [4] Structure prediction in high-entropy alloys with machine learning
    Zhao, D. Q.
    Pan, S. P.
    Zhang, Y.
    Liaw, P. K.
    Qiao, J. W.
    APPLIED PHYSICS LETTERS, 2021, 118 (23)
  • [5] Predictive Modeling of High-Entropy Alloys and Amorphous Metallic Alloys Using Machine Learning
    Jung, Son Gyo
    Jung, Guwon
    Cole, Jacqueline M.
    Journal of Chemical Information and Modeling, 2024, 64 (19) : 7313 - 7336
  • [6] Machine Learning Design for High-Entropy Alloys: Models and Algorithms
    Liu, Sijia
    Yang, Chao
    METALS, 2024, 14 (02)
  • [7] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Yao-Jen Chang
    Chia-Yung Jui
    Wen-Jay Lee
    An-Chou Yeh
    JOM, 2019, 71 : 3433 - 3442
  • [8] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Chang, Yao-Jen
    Jui, Chia-Yung
    Lee, Wen-Jay
    Yeh, An-Chou
    JOM, 2019, 71 (10) : 3433 - 3442
  • [9] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [10] Machine learning for high-entropy alloys: Progress, challenges and opportunities
    Liu, Xianglin
    Zhang, Jiaxin
    Pei, Zongrui
    PROGRESS IN MATERIALS SCIENCE, 2023, 131