EFFICIENCY BASED ADAPTIVE LOCAL REFINEMENT FOR FIRST-ORDER SYSTEM LEAST-SQUARES FORMULATIONS

被引:31
|
作者
Adler, J. H. [1 ]
Manteuffel, T. A. [2 ]
McCormick, S. F. [2 ]
Nolting, J. W. [3 ]
Ruge, J. W. [2 ]
Tang, L. [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[3] GeoEye Inc, Thornton, CO 80241 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 01期
基金
美国国家科学基金会;
关键词
adaptive local refinement; algebraic multigrid; first-order system least-squares; nested iteration; magnetohydrodynamics; FINITE-ELEMENT METHOD; H-P-VERSION; PARTIAL-DIFFERENTIAL-EQUATIONS; RESISTIVE MAGNETOHYDRODYNAMICS; 1-DIMENSION; IMPLICIT; SOLVER; FOSLS;
D O I
10.1137/100786897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose new adaptive local refinement (ALR) strategies for first-order system least-squares finite elements in conjunction with algebraic multigrid methods in the context of nested iteration. The goal is to reach a certain error tolerance with the least amount of computational cost and nearly uniform distribution of the error over all elements. To accomplish this, the refinement decision at each refinement level is determined based on optimizing efficiency measures that take into account both error reduction and computational cost. Two efficiency measures are discussed: predicted error reduction and predicted computational cost. These methods are first applied to a two-dimensional (2D) Poisson problem with steep gradients, and the results are compared with the threshold-based methods described in [W. Dorfler, SIAM J. Numer. Anal., 33 (1996), pp. 1106-1124]. Next, these methods are applied to a 2D reduced model of the incompressible, resistive magnetohydrodynamic equations. These equations are used to simulate instabilities in a large aspect-ratio tokamak. We show that, by using the new ALR strategies on this system, we are able to resolve the physics using only 10 percent of the computational cost used to approximate the solutions on a uniformly refined mesh within the same error tolerance.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [1] Parallel adaptive mesh refinement for first-order system least squares
    Brezina, M.
    Garcia, J.
    Manteuffel, T.
    McCormick, S.
    Ruge, J.
    Tang, L.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (02) : 343 - 366
  • [2] First-order system least-squares for the Helmholtz equation
    Lee, B
    Manteuffel, TA
    McCormick, SF
    Ruge, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05): : 1927 - 1949
  • [3] FIRST-ORDER SYSTEM LEAST-SQUARES FOR INTERFACE PROBLEMS
    Bertrand, Fleurianne
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1711 - 1730
  • [4] On first-order formulations of the least-squares finite element method for incompressible flows
    Ding, X
    Tsang, TTH
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2003, 17 (03) : 183 - 197
  • [5] Local error estimates for least-squares finite element methods for first-order system
    Ku, JaEun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 : 92 - 100
  • [6] Further results on error estimators for local refinement with first-order system least squares (FOSLS)
    Manteuffel, Thomas
    McCormick, Steven
    Nolting, Joshua
    Ruge, John
    Sanders, Geoff
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (2-3) : 387 - 413
  • [7] First order least-squares formulations for eigenvalue problems
    Bertrand, Fleurianne
    Boffi, Daniele
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1339 - 1363
  • [8] First-order system least-squares (FOSLS) for modeling blood flow
    Heys, J. J.
    DeGroff, C. G.
    Manteuffel, T. A.
    McCormick, S. F.
    MEDICAL ENGINEERING & PHYSICS, 2006, 28 (06) : 495 - 503
  • [9] First-order system least-squares for Darcy-Stokes flow
    Danisch, Garvin
    Starke, Gerhard
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) : 731 - 745
  • [10] A FLUIDITY-BASED FIRST-ORDER SYSTEM LEAST-SQUARES METHOD FOR ICE SHEETS
    Allen, Jeffery
    Leibs, Chris
    Manteuffel, Tom
    Rajaram, Harihar
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02): : B352 - B374