Comparison of Deep Learning and Support Vector Machine Learning for Subgroups of Multiple Sclerosis

被引:8
|
作者
Karaca, Yeliz [1 ]
Cattani, Carlo [2 ]
Moonis, Majaz [3 ]
机构
[1] Tuscia Univ, Visiting Engn Sch DEIM, Viterbo, Italy
[2] Tuscia Univ, Engn Sch DEIM, Viterbo, Italy
[3] Univ Massachusetts, Med Sch, Worcester, MA 01605 USA
关键词
Deep learning; Support vector machines kernel types; Multiple Sclerosis subgroups; MRI;
D O I
10.1007/978-3-319-62395-5_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning methods are frequently used for data sets in many fields including medicine for purposes of feature extraction and pattern recognition. This study includes lesion data obtained from Magnetic Resonance images taken in three different years and belonging to 120 individuals (with 76 RRMS, 6 PPMS, 38 SPMS). Many alternative methods are used nowadays to be able to find out the strong and distinctive features of Multiple Sclerosis based on MR images. Deep learning has the working capacity pertaining to a much wider scaled space (120 x 228), less dimension (50 x 228) (also referred to as distinctive) feature space and SVM (120 x 228). Deep learning has formed a more skillful system in the classification of MS subgroups by working with fewer sets of features compared to SVM algorithm. Deep learning algorithm has a better accuracy rate in comparing the MS subgroups compared to multiclass SVM algorithm kernel types which are among the conventional machine learning systems.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 50 条
  • [1] Brain Age in Multiple Sclerosis: A comparison of traditional machine learning and deep learning methods
    Skattebol, L.
    Stromstad, M.
    Leonardsen, E.
    Kaufmann, T.
    Moridi, T.
    Stawiarz, L.
    Ouellette, R.
    Ineichen, B.
    Ferreira, D.
    Muehlboeck, S.
    Brune, S.
    Nygaard, G.
    Berg-Hansen, P.
    Sowa, P.
    Manouchehrinia, A.
    Westman, E.
    Olsson, T.
    Celius, E.
    Hillert, J.
    Kockum, I.
    Harbo, H.
    Piehl, F.
    Granberg, T.
    Westlye, L.
    Hogestol, E.
    EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 : 144 - 145
  • [2] Brain age in multiple sclerosis: a comparison between machine learning and deep learning models
    Skattebol, L.
    Stromstad, M.
    Leonardsen, E. H.
    Kaufmann, T.
    Moridi, T.
    Stawiarz, L.
    Ouellette, R.
    Ineichen, B. V.
    Ferreira, D.
    Muehlboeck, S.
    Brune, S.
    Nygaard, G. O.
    Berg-Hansen, P.
    Beyer, M. K.
    Sowa, P.
    Manouchehrinia, A.
    Westman, E.
    Beck, D.
    Olsson, T.
    Celius, E. G.
    Hillert, J.
    Kockum, I.
    Harbo, H. F.
    Piehl, F.
    Granberg, T.
    Westlye, L. T.
    Hogestol, E. A.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (3_SUPPL) : 25 - 26
  • [3] A Comparison of Extreme Learning Machine and Support Vector Machine Classifiers
    Bucurica, Mihai
    Dogaru, Radu
    Dogaru, Ioana
    2015 IEEE 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2015, : 471 - 474
  • [4] When Ensemble Learning Meets Deep Learning: a New Deep Support Vector Machine for Classification
    Qi, Zhiquan
    Wang, Bo
    Tian, Yingjie
    Zhang, Peng
    KNOWLEDGE-BASED SYSTEMS, 2016, 107 : 54 - 60
  • [5] Learning Distance Metric for Support Vector Machine: A Multiple Kernel Learning Approach
    Weiqi Zhang
    Zifei Yan
    Gang Xiao
    Hongzhi Zhang
    Wangmeng Zuo
    Neural Processing Letters, 2019, 50 : 2899 - 2923
  • [6] Learning Distance Metric for Support Vector Machine: A Multiple Kernel Learning Approach
    Zhang, Weiqi
    Yan, Zifei
    Xiao, Gang
    Zhang, Hongzhi
    Zuo, Wangmeng
    NEURAL PROCESSING LETTERS, 2019, 50 (03) : 2899 - 2923
  • [7] Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities
    Aslam, Nida
    Khan, Irfan Ullah
    Bashamakh, Asma
    Alghool, Fatima A.
    Aboulnour, Menna
    Alsuwayan, Noorah M.
    Alturaif, Rawa'a K.
    Brahimi, Samiha
    Aljameel, Sumayh S.
    Al Ghamdi, Kholoud
    SENSORS, 2022, 22 (20)
  • [8] Comparison of extreme learning machine with support vector machine for text classification
    Liu, Y
    Loh, HT
    Tor, SB
    INNOVATIONS IN APPLIED ARTIFICIAL INTELLIGENCE, 2005, 3533 : 390 - 399
  • [9] Support Vector Machine with Multiple Kernel Learning for Image Retrieval
    Athoillah, Muhammad
    Irawan, M. Isa
    Imah, Elly Matul
    2015 INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEMS (ICTS), 2015, : 17 - 22
  • [10] Estimation of voting behavior in election using support vector machine, extreme learning machine and deep learning
    Tanyildizi, Nural Imik
    Tanyildizi, Harun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (20): : 17329 - 17342