A robust music genre classification approach for global and regional music datasets evaluation

被引:0
|
作者
de Sousa, Jefferson Martins [1 ]
Pereira, Eanes Torres [1 ]
Veloso, Luciana Ribeiro [2 ]
机构
[1] Univ Fed Campina Grande, Dept Sistemas & Comp DSC CEEI, Campina Grande, Paraiba, Brazil
[2] Univ Fed Campina Grande, Dept Engn Eletr DEE CEEI, Campina Grande, Brazil
关键词
Music Genre Recognition; Audio Signal Processing; Pattern Recognition; Information Retrieval;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with two problems: (1) the selection of a set of music features in order to achieve high genre classification accuracies; (2) the absence of a representative music dataset of regional brazilian music. In this paper, we propose a set of features to classify genres of music. The features proposed were obtained by a methodical selection of important features used in the literature of Music Information Retrieval (MIR) and Music Emotion Recognition (MER). Besides, we propose a new music dataset called BMD (Brazilian Music Dataset) 1, containing 120 songs labeled in 7 musical genres: Forro, Rock, Repente, MPB(Musica Popular Brasileira - Brazilian Popular Music), Brega, Sertanejo and Disco. An important characteristic of this new dataset compared with others, is the presence of three popular genres in Brazil Northeast region: Repente, Brega and a characteristic genre similar to MPB, which we also call as MPB. We evaluated our proposed features on both datasets: GTZAN and BMD. The proposed approach achieved average accuracy (after 30 runs of 5-fold-cross-validations) of 79.7% for GTZAN and 86.11% for the BMD. Another important contribution of this work is random repetition of cross-validation executions. Most of the papers performs only a single n-fold cross-validation. We criticize that practice and propose, at least, 30 random executions to compute the average accuracy.
引用
收藏
页码:109 / 113
页数:5
相关论文
共 50 条
  • [1] Automatic Music Genre Classification in Small and Ethnic Datasets
    Tavares, Tiago Fernandes
    Foleiss, Juliano Henrique
    MUSIC TECHNOLOGY WITH SWING, CMMR 2017, 2018, 11265 : 35 - 48
  • [2] Robust handcrafted features for music genre classification
    Victor Hugo da Silva Muniz
    João Baptista de Oliveira e Souza Filho
    Neural Computing and Applications, 2023, 35 : 9335 - 9348
  • [3] Robust handcrafted features for music genre classification
    Muniz, Victor Hugo da Silva
    de Oliveira e Souza Filho, Joao Baptista
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (13): : 9335 - 9348
  • [4] Multi-modal Music Genre Classification Approach
    Zhen, Chao
    Xu, Jieping
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 8, 2010, : 398 - 402
  • [5] GenreNet: A Deep Based Approach for Music Genre Classification
    N. Bala Ganesh
    M. S. Bhuvaneswari
    K. Bhagavathi Sankar
    P. Ganesh
    SN Computer Science, 5 (8)
  • [6] Music Genre Classification: Genre-Specific Characterization and Pairwise Evaluation
    Lefaivre, Adam
    Zhang, John Z.
    2018 CONFERENCE ON INTERACTION WITH SOUND (AUDIO MOSTLY): SOUND IN IMMERSION AND EMOTION (AM'18), 2018,
  • [7] Convolutional Neural Networks Approach for Music Genre Classification
    Cheng, Yu-Huei
    Chang, Pang-Ching
    Kuo, Che-Nan
    2020 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2020), 2021, : 399 - 403
  • [8] A machine learning approach to automatic music genre classification
    Silla, Carlos N.
    Koerich, Alessandro L.
    Kaestner, Celso A. A.
    Journal of the Brazilian Computer Society, 2008, 14 (03) : 7 - 18
  • [9] A Novel Automatic Hierachical Approach to Music Genre Classification
    Ariyaratne, Hasitha B.
    Zhang, Dengsheng
    2012 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2012, : 564 - 569
  • [10] A FEATURE SELECTION APPROACH FOR AUTOMATIC MUSIC GENRE CLASSIFICATION
    Silla, Carlos N., Jr.
    Koerich, Alessandro L.
    Kaestner, Celso A. A.
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2009, 3 (02) : 183 - 208