Bounded Riemannian submersions

被引:0
|
作者
Tapp, K [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
holonomy; nonnegative curvature; soul; ideal boundary; Riemannian submersion; finiteness theorems;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish global metric properties of a Riemannian submersion pi : Mn+k --> B-n for which the undamental tensors are bounded in norm: /A/ less than or equal to C-A, /T/ less than or equal to C-T. For example, if B is compact and simply connected, then there exists a constant C = C(B, C-A, C-T, k) such that for all p is an element of B, d(Fp) less than or equal to C.d(M), where d(Fp) denotes the intrinsic distance function on the fiber F-p := pi (-1)(p), and d(M) denotes the distance function of M restricted to F-p. When applied to the metric projection pi : M --> Sigma from an open manifold of nonnegative curvature M onto its soul C, this property implies that the ideal boundary of M can be determined from a single fiber of the projection. As a second application, we show that there are only finitely many isomorphism types of fiber bundles among the class of Riemannian submersions whose base space and total space both satisfy fixed geometric bounds (volume from below, diameter from above, curvature from above and below).
引用
收藏
页码:637 / 654
页数:18
相关论文
共 50 条
  • [1] On Riemannian submersions
    Lempert, L.
    ACTA MATHEMATICA HUNGARICA, 2019, 158 (02) : 363 - 372
  • [2] On Riemannian submersions
    L. Lempert
    Acta Mathematica Hungarica, 2019, 158 : 363 - 372
  • [3] Biharmonic Riemannian submersions
    Mehmet Akif Akyol
    Ye-Lin Ou
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 559 - 570
  • [5] Golden Riemannian submersions
    Meric, Semsi Eken
    FILOMAT, 2023, 37 (17) : 5659 - 5670
  • [6] Isotropic Riemannian submersions
    Erdogan, Feyza Esra
    Sahin, Bayram
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (06) : 2284 - 2296
  • [7] Biharmonic Riemannian submersions
    Akyol, Mehmet Akif
    Ou, Ye-Lin
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (02) : 559 - 570
  • [8] GENERIC RIEMANNIAN SUBMERSIONS
    Ali, Shahid
    Fatima, Tanveer
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 395 - 409
  • [9] Generic ξ⊥-Riemannian submersions
    Sari, Ramazan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (02): : 390 - 403
  • [10] Riemannian Submersions with Discrete Spectrum
    Bessa, G. Pacelli
    Montenegro, J. Fabio
    Piccione, Paolo
    JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (02) : 603 - 620