UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF RANDOM MATRICES

被引:0
|
作者
Erados, Laszlo [1 ]
Yau, Horng-Tzer [2 ]
机构
[1] Univ Munich, Math Inst, D-80539 Munich, Germany
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Random matrix; local semicircle law; Tracy-Widom distribution; Dyson Brownian motion; BULK UNIVERSALITY; SEMICIRCLE LAW; ENERGY-LEVELS; ORTHOGONAL POLYNOMIALS; EIGENVALUE STATISTICS; DELOCALIZATION; ASYMPTOTICS; ENSEMBLES; RESPECT; MODELS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Wigner-Dyson-Gaudin-Mehta conjecture asserts that the local eigenvalue statistics of large random matrices exhibit universal behavior depending only on the symmetry class of the matrix ensemble. For invariant matrix models, the eigenvalue distributions are given by a log-gas with potential V and inverse temperature beta = 1, 2,4, corresponding to the orthogonal, unitary and symplectic ensembles. For beta is not an element of {1, 2, 4}, there is no natural random matrix ensemble behind this model, but the statistical physics interpretation of the log-gas is still valid for all beta > 0. The universality conjecture for invariant ensembles asserts that the local eigenvalue statistics are independent of V. In this article, we review our recent solution to the universality conjecture for both invariant and non-invariant ensembles. We will also demonstrate that the local ergodicity of the Dyson Brownian motion is the intrinsic mechanism behind the universality. Furthermore, we review the solution of Dyson's conjecture on the local relaxation time of the Dyson Brownian motion. Related questions such as delocalization of eigenvectors and local version of Wigner's semicircle law will also be discussed.
引用
收藏
页码:377 / 414
页数:38
相关论文
共 50 条
  • [1] Universality of local spectral statistics of products of random matrices
    Akemann, Gernot
    Burda, Zdzislaw
    Kieburg, Mario
    PHYSICAL REVIEW E, 2020, 102 (05)
  • [2] RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2015, 43 (02): : 782 - 874
  • [3] Random matrices: Universality of local eigenvalue statistics
    Tao, Terence
    Vu, Van
    ACTA MATHEMATICA, 2011, 206 (01) : 127 - 204
  • [4] RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2012, 40 (03): : 1285 - 1315
  • [5] The local relaxation flow approach to universality of the local statistics for random matrices
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    Yin, Jun
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (01): : 1 - 46
  • [6] Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge
    Terence Tao
    Van Vu
    Communications in Mathematical Physics, 2010, 298 : 549 - 572
  • [7] Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge
    Tao, Terence
    Vu, Van
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 298 (02) : 549 - 572
  • [8] Local spectral statistics of the addition of random matrices
    Che, Ziliang
    Landon, Benjamin
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 175 (1-2) : 579 - 654
  • [9] Local spectral statistics of the addition of random matrices
    Ziliang Che
    Benjamin Landon
    Probability Theory and Related Fields, 2019, 175 : 579 - 654
  • [10] Universality of local eigenvalue statistics in random matrices with external source
    O'Rourke, Sean
    Vu, Van
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2014, 3 (02)