Spectral properties of the hierarchical product of graphs

被引:3
|
作者
Skardal, Per Sebastian [1 ]
Wash, Kirsti [1 ]
机构
[1] Trinity Coll, Dept Math, Hartford, CT 06106 USA
关键词
COMPLEX NETWORKS;
D O I
10.1103/PhysRevE.94.052311
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The hierarchical product of two graphs represents a natural way to build a larger graph out of two smaller graphs with less regular and therefore more heterogeneous structure than the Cartesian product. Here we study the eigenvalue spectrum of the adjacency matrix of the hierarchical product of two graphs. Introducing a coupling parameter describing the relative contribution of each of the two smaller graphs, we perform an asymptotic analysis for the full spectrum of eigenvalues of the adjacency matrix of the hierarchical product. Specifically, we derive the exact limit points for each eigenvalue in the limits of small and large coupling, as well as the leading-order relaxation to these values in terms of the eigenvalues and eigenvectors of the two smaller graphs. Given its central roll in the structural and dynamical properties of networks, we study in detail the Perron-Frobenius, or largest, eigenvalue. Finally, as an example application we use our theory to predict the epidemic threshold of the susceptible-infected-susceptible model on a hierarchical product of two graphs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The hierarchical product of graphs
    Barriere, L.
    Comellas, F.
    Dalfo, C.
    Fiol, M. A.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (01) : 36 - 48
  • [2] Topological and Spectral Properties of Small-World Hierarchical Graphs
    Qi, Yi
    Yi, Yuhao
    Zhang, Zhongzhi
    COMPUTER JOURNAL, 2019, 62 (05): : 769 - 784
  • [3] The generalized hierarchical product of graphs
    Barriere, L.
    Dalfo, C.
    Fiol, M. A.
    Mitjana, M.
    DISCRETE MATHEMATICS, 2009, 309 (12) : 3871 - 3881
  • [4] Hosoya Polynomial of Hierarchical Product of Graphs
    Eliasi, Mehdi
    Iranmanesh, Ali
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (01) : 111 - 119
  • [5] Further results on hierarchical product of graphs
    Tavakoli, M.
    Rahbarnia, F.
    Ashrafi, A. R.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (7-8) : 1162 - 1167
  • [6] Zagreb Indices of the Generalized Hierarchical Product of Graphs
    Arezoomand, Majid
    Taeri, Bijan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (01) : 131 - 140
  • [7] PRIME FACTORIZATION AND DOMINATION IN THE HIERARCHICAL PRODUCT OF GRAPHS
    Anderson, S. E.
    Guo, Y.
    Tenney, A.
    Wash, K. A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (04) : 873 - 890
  • [8] On the hierarchical product of graphs and the generalized binomial tree
    Barriere, L.
    Comellas, F.
    Dalfo, C.
    Fiol, M. A.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (07): : 695 - 712
  • [9] Learning Product Graphs From Spectral Templates
    Einizade, Aref
    Sardouie, Sepideh Hajipour
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 357 - 372
  • [10] Generalized spectral characterization of rooted product graphs
    Mao, Lihuan
    Wang, Wei
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (14): : 2310 - 2324