Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps

被引:102
|
作者
Vasile, Ruggero [1 ]
Maniscalco, Sabrina [1 ,2 ]
Paris, Matteo G. A. [3 ,4 ]
Breuer, Heinz-Peter [5 ]
Piilo, Jyrki [1 ]
机构
[1] Univ Turku, Dept Phys & Astron, Turku Ctr Quantum Phys, FI-20014 Turun, Finland
[2] Heriot Watt Univ, EPS Phys, SUPA, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[4] UdR Milano Statale, CNISM, I-20133 Milan, Italy
[5] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
关键词
D O I
10.1103/PhysRevA.84.052118
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the idea put forward in H.-P. Breuer et al. [Phys. Rev. Lett. 103, 210401 (2009);], that is, by quantifying the flow of information from the environment back to the open system. Instead of the trace distance we use here the fidelity to assess distinguishability of quantum states. We employ our measure to evaluate non-Markovianity of two paradigmatic Gaussian channels: the purely damping channel and the quantum Brownian motion channel with Ohmic environment. We consider different classes of Gaussian states and look for pairs of states maximizing the backflow of information. For coherent states we find simple analytical solutions, whereas for squeezed states we provide both exact numerical and approximate analytical solutions in the weak coupling limit.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Gaussian interferometric power as a measure of continuous-variable non-Markovianity
    Souza, Leonardo A. M.
    Dhar, Himadri Shekhar
    Nath Bera, Manabendra
    Liuzzo-Scorpo, Pietro
    Adesso, Gerardo
    PHYSICAL REVIEW A, 2015, 92 (05)
  • [2] Noninvertibility and non-Markovianity of quantum dynamical maps
    Jagadish V.
    Srikanth R.
    Petruccione F.
    Physical Review A, 2023, 108 (04)
  • [3] A measure of non-Markovianity for unital quantum dynamical maps
    S. Haseli
    S. Salimi
    A. S. Khorashad
    Quantum Information Processing, 2015, 14 : 3581 - 3594
  • [4] Singularities, mixing, and non-Markovianity of Pauli dynamical maps
    Utagi, Shrikant
    Rao, Vinod N.
    Srikanth, R.
    Banerjee, Subhashish
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [5] Alternative non-Markovianity measure by divisibility of dynamical maps
    Hou, S. C.
    Yi, X. X.
    Yu, S. X.
    Oh, C. H.
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [6] A measure of non-Markovianity for unital quantum dynamical maps
    Haseli, S.
    Salimi, S.
    Khorashad, A. S.
    QUANTUM INFORMATION PROCESSING, 2015, 14 (09) : 3581 - 3594
  • [7] Non-Markovianity criteria for mixtures of noninvertible Pauli dynamical maps
    Siudzinska, Katarzyna
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (21)
  • [8] Non-Markovianity of Gaussian Channels
    Torre, G.
    Roga, W.
    Illuminati, F.
    PHYSICAL REVIEW LETTERS, 2015, 115 (07)
  • [9] Experimental Investigation of Spectra of Dynamical Maps and their Relation to non-Markovianity
    Yu, Shang
    Wang, Yi-Tao
    Ke, Zhi-Jin
    Liu, Wei
    Meng, Yu
    Li, Zhi-Peng
    Zhang, Wen-Hao
    Chen, Geng
    Tang, Jian-Shun
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW LETTERS, 2018, 120 (06)
  • [10] Quantifying non-Markovianity via correlations
    Luo, Shunlong
    Fu, Shuangshuang
    Song, Hongting
    PHYSICAL REVIEW A, 2012, 86 (04):