Monocular depth estimation based on deep learning: An overview

被引:175
|
作者
Zhao, ChaoQiang [1 ]
Sun, QiYu [1 ]
Zhang, ChongZhen [1 ]
Tang, Yang [1 ]
Qian, Feng [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
autonomous systems; monocular depth estimation; deep learning; unsupervised learning; RECONSTRUCTION;
D O I
10.1007/s11431-020-1582-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Depth information is important for autonomous systems to perceive environments and estimate their own state. Traditional depth estimation methods, like structure from motion and stereo vision matching, are built on feature correspondences of multiple viewpoints. Meanwhile, the predicted depth maps are sparse. Inferring depth information from a single image (monocular depth estimation) is an ill-posed problem. With the rapid development of deep neural networks, monocular depth estimation based on deep learning has been widely studied recently and achieved promising performance in accuracy. Meanwhile, dense depth maps are estimated from single images by deep neural networks in an end-to-end manner. In order to improve the accuracy of depth estimation, different kinds of network frameworks, loss functions and training strategies are proposed subsequently. Therefore, we survey the current monocular depth estimation methods based on deep learning in this review. Initially, we conclude several widely used datasets and evaluation indicators in deep learning-based depth estimation. Furthermore, we review some representative existing methods according to different training manners: supervised, unsupervised and semi-supervised. Finally, we discuss the challenges and provide some ideas for future researches in monocular depth estimation.
引用
收藏
页码:1612 / 1627
页数:16
相关论文
共 50 条
  • [1] Monocular depth estimation based on deep learning: An overview
    ZHAO ChaoQiang
    SUN Qi Yu
    ZHANG ChongZhen
    TANG Yang
    QIAN Feng
    Science China(Technological Sciences), 2020, (09) : 1612 - 1627
  • [2] Monocular depth estimation based on deep learning: An overview
    ZHAO ChaoQiang
    SUN Qi Yu
    ZHANG ChongZhen
    TANG Yang
    QIAN Feng
    Science China(Technological Sciences), 2020, 63 (09) : 1612 - 1627
  • [3] Monocular depth estimation based on deep learning: An overview
    ChaoQiang Zhao
    QiYu Sun
    ChongZhen Zhang
    Yang Tang
    Feng Qian
    Science China Technological Sciences, 2020, 63 : 1612 - 1627
  • [4] Deep Learning Based Monocular Depth Estimation: A Survey
    Jiang J.-J.
    Li Z.-Y.
    Liu X.-M.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (06): : 1276 - 1307
  • [5] Monocular Depth Estimation Based on Deep Learning:A Survey
    Ruan Xiaogang
    Yan Wenjing
    Huang Jing
    Guo Peiyuan
    Guo Wei
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2436 - 2440
  • [6] Monocular Depth Estimation of Noncooperative Spacecraft Based on Deep Learning
    Zhao, Erxun
    Zhang, Yang
    Gao, Jingmin
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2023, 20 (06): : 334 - 342
  • [7] Progress in Deep Learning Based Monocular Image Depth Estimation
    Li Yang
    Chen Xiuwan
    Wang Yuan
    Liu Maolin
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (19)
  • [8] ROBUST LEARNING FOR DEEP MONOCULAR DEPTH ESTIMATION
    Irie, Go
    Kawanishi, Takahito
    Kashino, Kunio
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 964 - 968
  • [9] Deep learning for monocular depth estimation: A review
    Ming, Yue
    Meng, Xuyang
    Fan, Chunxiao
    Yu, Hui
    NEUROCOMPUTING, 2021, 438 : 14 - 33
  • [10] Monocular Depth Estimation Using Deep Learning: A Review
    Masoumian, Armin
    Rashwan, Hatem A.
    Cristiano, Julian
    Asif, M. Salman
    Puig, Domenec
    SENSORS, 2022, 22 (14)