Plasmonic Electrons-Driven Solar-to-Hydrocarbon Conversion over Au NR@ZnO Core-Shell Nanostructures

被引:10
|
作者
Shen, Jinni [1 ]
Chen, Zhenye [1 ]
Han, Shitong [2 ]
Zhang, Hongwen [1 ]
Xu, Hailing [2 ]
Xu, Chao [1 ]
Ding, Zhengxin [1 ]
Yuan, Rusheng [1 ]
Chen, Jinquan [3 ]
Long, Jinlin [1 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Peoples R China
[2] State Key Lab NBC Protect Civilian, Beijing 102205, Peoples R China
[3] East China Normal Univ, State Key Lab Precision Spect, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
photocatalysis; core-shell nanostructure; plasmon resonance; gold nanorod; ZnO; CO2; photoreduction; CO2; REDUCTION; ANATASE TIO2; NANOPARTICLES; XPS; PHOTOCATALYSTS; ADSORPTION; RESONANCE; OXIDATION; CATALYSTS; NANORODS;
D O I
10.1002/cctc.202000390
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work demonstrates the long-range redox reactivity of gold plasmon-generated hot electrons for solar-driven CO2 conversion. A series of Au NR@ZnO core-shell photocatalysts with a tunable shell thickness are rationally designed to achieve the solar-to-CH4 conversion, where the hot plasmonic electrons-induced photoreduction takes place on the polar oxide moiety. The shell thickness-independent activity implies that the core, gold nanorods, plays a dominant role in the CH4 generation. The ZnO metal oxide semiconductor shell is beneficial to prolong the lifetime of hot electrons, thereby enhancing the photocatalytic efficiency. However, the thickness of ZnO shell is not relevant to the production rate. Both of these two parts are co-excited by solar light and synergetic enhance the photocatalytic activity.
引用
收藏
页码:2989 / 2994
页数:6
相关论文
共 50 条
  • [1] Effect of morphological evolution and aggregation of plasmonic core-shell nanostructures on solar thermal conversion
    Xing, Linzhuang
    Wang, Ruipeng
    Ha, Yuan
    Li, Zhimin
    APPLIED OPTICS, 2023, 62 (19) : 5195 - 5201
  • [2] Plasmonic Property and Stability of Core-Shell Au@SiO2 Nanostructures
    Jinsheng Liu
    Caixia Kan
    Bo Cong
    Haiying Xu
    Yuan Ni
    Yuling Li
    Daning Shi
    Plasmonics, 2014, 9 : 1007 - 1014
  • [3] Plasmonic Property and Stability of Core-Shell Au@SiO2 Nanostructures
    Liu, Jinsheng
    Kan, Caixia
    Cong, Bo
    Xu, Haiying
    Ni, Yuan
    Li, Yuling
    Shi, Daning
    PLASMONICS, 2014, 9 (05) : 1007 - 1014
  • [4] Optimizing Ag-Pt core-shell nanostructures for solar energy conversion, plasmonic photocatalysis, and photothermal catalysis
    Chen, Yun
    Zhai, Yanni
    Deng, Liren
    Wang, Ningning
    Mao, Yihui
    Yang, Jinglong
    Huang, Yu
    APPLIED PHYSICS LETTERS, 2019, 114 (18)
  • [5] Fabrication of plasmonic junction diodes based on Ag@ZnO core-shell nanostructures
    Erdogan, Erman
    Canpolat, Nurtac
    Aydogan, Sakir
    Yilmaz, Mehmet
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [6] Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells
    Tang, Mingyao
    Zhou, Lin
    Gu, Shuai
    Zhu, Weidong
    Wang, Yang
    Xu, Jun
    Deng, Zhengtao
    Yu, Tao
    Lu, Zhenda
    Zhu, Jia
    APPLIED PHYSICS LETTERS, 2016, 109 (18)
  • [7] The structure and plasmonic properties regulation of Au@Ag core-shell nanostructures with Au triangular nanoprisms as the core mediated by halide
    Wu, Gao-feng
    Zhu, Jian
    Weng, Guo-jun
    Cai, Hao-yu
    Li, Jian-jun
    Zhao, Jun-wu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 944
  • [8] ZrC-Au core-shell nanoparticles for efficient solar photothermal conversion
    Yang, Qihang
    Qin, Caiyan
    Chen, Ning
    Liu, Haotuo
    Zhang, Bin
    Wu, Xiaohu
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 204
  • [9] Plasmonic Perovskite Solar Cells Utilizing Au@SiO2 Core-Shell Nanoparticles
    Nilesh Kumar Pathak
    Nikhil Chander
    Vamsi K. Komarala
    R. P. Sharma
    Plasmonics, 2017, 12 : 237 - 244
  • [10] Au-Pt core-shell nanoemitters on silicon for photoelectrochemical solar energy conversion
    Lublow, M.
    Bouabadi, B.
    Kubala, S.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 107 : 56 - 62