Numerical homogenization of fractal interface problems

被引:0
|
作者
Kornhuber, Ralf [1 ]
Podlesny, Joscha [1 ]
Yserentant, Harry [2 ]
机构
[1] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Fractal interface problems; multiscale finite elements; subspace decomposition; Clement-type projection; COMPOSITE FINITE-ELEMENTS; QUASI-INTERPOLATION; ELLIPTIC PROBLEMS; MULTISCALE; APPROXIMATION; CONTACT; MEDIA;
D O I
10.1051/m2an/2022046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical homogenization of a class of fractal elliptic interface problems inspired by related mechanical contact problems from the geosciences. A particular feature is that the solution space depends on the actual fractal geometry. Our main results concern the construction of projection operators with suitable stability and approximation properties. The existence of such projections then allows for the application of existing concepts from localized orthogonal decomposition (LOD) and successive subspace correction to construct first multiscale discretizations and iterative algebraic solvers with scale-independent convergence behavior for this class of problems.
引用
收藏
页码:1451 / 1481
页数:31
相关论文
共 50 条
  • [1] FRACTAL HOMOGENIZATION OF MULTISCALE INTERFACE PROBLEMS
    Heida, Martin
    Kornhuber, Ralf
    Podlesny, Joscha
    MULTISCALE MODELING & SIMULATION, 2020, 18 (01): : 294 - 314
  • [2] NUMERICAL HOMOGENIZATION OF H(CURL)-PROBLEMS
    Gallistl, Dietmar
    Henning, Patrick
    Verfuerth, Barbara
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1570 - 1596
  • [3] SOLUTION OF INTERFACE PROBLEMS BY HOMOGENIZATION-III
    BABUSKA, I
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (06) : 923 - 937
  • [4] SOLUTION OF INTERFACE PROBLEMS BY HOMOGENIZATION .1.
    BABUSKA, I
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1976, 7 (05) : 603 - 634
  • [5] HOMOGENIZATION AND EXACT CONTROLLABILITY FOR PROBLEMS WITH IMPERFECT INTERFACE
    Monsurro, Sara
    Perugia, Carmen
    NETWORKS AND HETEROGENEOUS MEDIA, 2019, 14 (02) : 411 - 444
  • [6] Numerical homogenization for nonlinear strongly monotone problems
    Verfuerth, Barbara
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1313 - 1338
  • [7] Numerical Homogenization Methods for Parabolic Monotone Problems
    Abdulle, Assyr
    BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 : 1 - 38
  • [8] Numerical approximation of a class of problems in stochastic homogenization
    Costaouec, Ronan
    Le Bris, Claude
    Legoll, Frederic
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) : 99 - 103
  • [9] NUMERICAL HOMOGENIZATION FOR INDEFINITE H(CURL)-PROBLEMS
    Verfuerth, Barbara
    PROCEEDINGS OF EQUADIFF 2017 CONFERENCE, 2017, : 137 - 146
  • [10] Sensitivity analysis and Taylor expansions in numerical homogenization problems
    Buscaglia, G
    Jai, M
    NUMERISCHE MATHEMATIK, 2000, 85 (01) : 49 - 75